

The Xen Hypervisor documentation

Note

Xen’s Sphinx/RST documentation is a work in progress. The existing
documentation can be found at https://xenbits.xen.org/docs/

Xen is an open source, bare metal hypervisor. It runs as the most privileged
piece of software on the system, and shares the resources of the hardware
between virtual machines. See Introduction for an
introduction to a Xen system.

User documentation

This is documentation for an administrator of a Xen system. It is intended
for someone who is not necesserily a developer, has installed Xen from their
preferred distribution, and is attempting to run virtual machines and
configure the system.

	Admin Guide
	Introduction

	Microcode Loading

Guest documentation

This documentation concerns the APIs and ABIs available to guests. It is
intended for OS developers trying to use a Xen feature, and for Xen developers
to avoid breaking things.

	Guest documentation
	x86
	Hypercall ABI

	Hypercall Page

Hypervisor developer documentation

This is documentation for a hypervisor developer. It is intended for someone
who is building Xen from source, and is running the new hypervisor in some
kind of development environment.

	Hypervisor documentation
	Code Coverage

	x86

MISRA C coding guidelines

MISRA C rules and directive to be used as coding guidelines when writing
Xen hypervisor code.

	MISRA C rules for Xen

Miscellanea

	Glossary

Admin Guide

	Introduction

	Microcode Loading
	Boot time microcode loading
	Loading microcode from a single file

	Loading microcode from a Linux initrd

	Runtime microcode loading

Introduction

Xen is an open source, bare metal hypervisor. It runs as the most privileged
piece of software, and shares the resources of the hardware between virtual
machines.

In Xen terminology, there are domains, commonly abbreviated to
dom, which are identified by their numeric domid.

When Xen boots, dom0 is automatically started as well. Dom0 is a virtual
machine which, by default, is granted full permissions 1. A typical setup
might be:

[image: ../_images/xen-overview.drawio.svg]Dom0 takes the role of control domain, responsible for creating and
managing other virtual machines, and the role of hardware domain,
responsible for hardware and marshalling guest I/O.

Xen is deliberately minimal, and has no device drivers 2. Xen manages RAM,
schedules virtual CPUs on the available physical CPUs, and marshals
interrupts.

Xen also provides a hypercall interface to guests, including event channels
(virtual interrupts), grant tables (shared memory), on which a lot of higher
level functionality is built.

Footnotes

	1

	A common misconception with Xen’s architecture is that dom0 is somehow
different to other guests. The choice of id 0 is not an accident, and
follows in UNIX heritage.

	2

	This definition might be fuzzy. Xen can talk to common serial UARTs,
and knows how to drive various CPU internal devices such as IOMMUs, but
has no knowledge of network cards, disks, etc. All of that is the
hardware domains responsibility.

Microcode Loading

Like many other pieces of hardware, CPUs themselves have errata which are
discovered after shipping, and need to be addressed in the field. Microcode
can be considered as firmware for the processor, and updates are published as
needed by the CPU vendors.

Microcode is included as part of the system firmware by an OEM, and a system
firmware update is the preferred way of obtaining updated microcode. However,
this is often not the most expedient way to get updates, so Xen supports
loading microcode itself.

Distros typically package microcode updates for users, and may provide hooks
to cause microcode to be automatically loaded at boot time. Consult your dom0
distro guidance for microcode loading.

Microcode can make almost arbitrary changes to the processor, including to
software visible features. This includes removing features (e.g. the Haswell
TSX errata which necessitated disabling the feature entirely), or the addition
of brand new features (e.g. the Spectre v2 controls to work around speculative
execution vulnerabilities).

Boot time microcode loading

Where possible, microcode should be loaded at boot time. This allows the CPU
to be updated to its eventual configuration before Xen starts making setup
decisions based on the visible features.

Xen will report during boot if it performed a microcode update:

[root@host ~]# xl dmesg | grep microcode
(XEN) microcode: CPU0 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU2 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU4 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU6 updated from revision 0x1a to 0x25, date = 2018-04-02

The exact details printed are system and microcode specific. After boot, the
current microcode version can obtained from with dom0:

[root@host ~]# head /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 60
model name : Intel(R) Xeon(R) CPU E3-1240 v3 @ 3.40GHz
stepping : 3
microcode : 0x25
cpu MHz : 3392.148
cache size : 8192 KB
physical id : 0

Loading microcode from a single file

Xen handles microcode blobs in the binary form shipped by vendors, which is
also the format which the processor accepts. This format contains header
information which Xen and various userspace tools can use to identify the
correct blob for a specific CPU.

Tools such as Dracut will identify the correct blob for the current CPU, which
will be a few kilobytes, for minimal overhead during boot.

Additionally, Xen is capable of handling a number of blobs concatenated
together, and will locate the appropriate blob based on the header
information.

This option is less efficient during boot, but may be preferred in situations
where the exact CPU details aren’t known ahead of booting (e.g. install
media).

The file containing the blob(s) needs to be accessible to Xen as early as
possible.

	For multiboot/multiboot2 boots, this is achieved by loading the file as a
multiboot module. The ucode=$num command line option can be used to
identify which multiboot module contains the microcode, including negative
indexing to count from the end.

	For EFI boots, there isn’t really a concept of modules. A microcode file
can be specified in the EFI configuration file with ucode=$file. Use of
this mechanism will override any ucode= settings on the command line.

Loading microcode from a Linux initrd

For systems using a Linux based dom0, it usually suffices to install the
appropriate distro package, and add ucode=scan to Xen’s command line.

Xen is compatible with the Linux initrd microcode protocol. The initrd is
expected to be generated with an uncompressed CPIO archive at the beginning
which contains contains one of these two files:

kernel/x86/microcode/GenuineIntel.bin
kernel/x86/microcode/AuthenticAMD.bin

The ucode=scan command line option will cause Xen to search through all
modules to find any CPIO archives, and search the archive for the applicable
file. Xen will stop searching at the first match.

Runtime microcode loading

Warning

If at all possible, microcode updates should be done by firmware updates,
or at boot time. Not all microcode updates (or parts thereof) can be
applied at runtime.

Given the proprietary nature of microcode, we are unable to make any claim
that runtime microcode loading is risk-free. Any runtime microcode loading
needs adequate testing on a development instance before being rolled out to
production systems.

The xen-ucode utility can be used to initiate a runtime microcode load:

[root@host ~]# xen-ucode
xen-ucode: Xen microcode updating tool
Usage: xen-ucode <microcode blob>
[root@host ~]#

The details of microcode blobs (if even packaged to begin with) are specific
to the dom0 distribution. Consult your dom0 OS documentation for details.
One example with a Linux dom0 on a Haswell system might look like:

[root@host ~]# xen-ucode /lib/firmware/intel-ucode/06-3c-03
[root@host ~]#

It will pass the blob to Xen, which will check to see whether the blob is
correct for the processor, and newer than the running microcode.

If these checks pass, the entire system will be rendezvoused and an update
will be initiated on all CPUs in parallel. As with boot time loading,
diagnostics will be put out onto the console:

[root@host ~]# xl dmesg | grep microcode
(XEN) microcode: CPU0 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU2 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU4 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU6 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) 4 cores are to update their microcode
(XEN) microcode: CPU0 updated from revision 0x25 to 0x27, date = 2019-02-26
(XEN) microcode: CPU4 updated from revision 0x25 to 0x27, date = 2019-02-26
(XEN) microcode: CPU2 updated from revision 0x25 to 0x27, date = 2019-02-26
(XEN) microcode: CPU6 updated from revision 0x25 to 0x27, date = 2019-02-26

Guest documentation

	x86
	Hypercall ABI

	Hypercall Page

x86

	Hypercall ABI
	Registers

	Parameters

	Mode transfer

	Hypercall Page
	Creating Hypercall Pages

Hypercall ABI

Hypercalls are system calls to Xen. Two modes of guest operation are
supported, and up to 6 individual parameters are supported.

Hypercalls may only be issued by kernel-level software 1.

Registers

The registers used for hypercalls depends on the operating mode of the guest.

	ABI

	Hypercall Index

	Parameters (1 - 6)

	Result

	64bit

	RAX

	RDI RSI RDX R10 R8 R9

	RAX

	32bit

	EAX

	EBX ECX EDX ESI EDI EBP

	EAX

32 and 64bit PV guests have an ABI fixed by their guest type. The ABI for an
HVM guest depends on whether the vCPU is operating in a 64bit segment or not
2.

Parameters

Different hypercalls take a different number of parameters. Each hypercall
potentially clobbers each of its parameter registers; a guest may not rely on
the parameter registers staying the same. A debug build of Xen checks this by
deliberately poisoning the parameter registers before returning back to the
guest.

Mode transfer

The exact sequence of instructions required to issue a hypercall differs
between virtualisation mode and hardware vendor.

	Guest

	Transfer instruction

	32bit PV

	INT 0x82

	64bit PV

	SYSCALL

	Intel HVM

	VMCALL

	AMD HVM

	VMMCALL

To abstract away the details, Xen implements an interface known as the
Hypercall Page. This allows a guest to make a hypercall without needing to
perform mode-specific or vendor-specific setup.

Hypercall Page

The hypercall page is a page of guest RAM into which Xen will write suitable
transfer stubs.

Creating a hypercall page is an isolated operation from Xen’s point of view.
It is the guests responsibility to ensure that the hypercall page, once
written by Xen, is mapped with executable permissions so it may be used.
Multiple hypercall pages may be created by the guest, if it wishes.

The stubs are arranged by hypercall index, and start on 32-byte boundaries.
To invoke a specific hypercall, call the relevant stub 3:

call hypercall_page + index * 32

There result is an ABI which is invariant of the exact operating mode or
hardware vendor. This is intended to simplify guest kernel interfaces by
abstracting away the details of how it is currently running.

Creating Hypercall Pages

Guests which are started using the PV boot protocol may set set
XEN_ELFNOTE_HYPERCALL_PAGE to have the nominated page written as a
hypercall page during construction. This mechanism is common for PV guests,
and allows hypercalls to be issued with no additional setup.

Any guest can locate the Xen CPUID leaves and read the hypercall transfer
page information, which specifies an MSR that can be used to create
additional hypercall pages. When a guest physical address is written to the
MSR, Xen writes a hypercall page into the nominated guest page. This
mechanism is common for HVM guests which are typically started via legacy
means.

Footnotes

	1

	For HVM guests, HVMOP_guest_request_vm_event may be configured to
be usable from userspace, but this behaviour is not default.

	2

	While it is possible to use compatibility mode segments in a 64bit
kernel, hypercalls issues from such a mode will be interpreted with the
32bit ABI. Such a setup is not expected in production scenarios.

	3

	HYPERCALL_iret is special. It is only implemented for PV guests
and takes all its parameters on the stack. This stub should be
jmp’d to, rather than call’d. HVM guests have this stub
implemented as ud2a to prevent accidental use.

Hypervisor documentation

	Code Coverage
	Compiling Xen

	Accessing the raw coverage data

	GCC coverage

	Clang coverage

	x86
	How Xen Boots

Code Coverage

Xen can be compiled with coverage support. When configured, Xen will record
the coverage of its own basic blocks. Being a piece of system software rather
than a userspace, it can’t automatically write coverage out to the filesystem,
so some extra steps are required to collect and process the data.

Warning

ARM doesn’t currently boot when the final binary exceeds 2MB in size,
and the coverage build tends to exceed this limit.

Compiling Xen

Coverage support is dependent on the compiler and toolchain used. As Xen
isn’t a userspace application, it can’t use the compiler supplied library, and
instead has to provide some parts of the implementation itself.

For x86, coverage support was introduced with GCC 3.4 or later, and Clang 3.9
or later, and Xen is compatible with these. However, the compiler internal
formats do change occasionally, and this may involve adjustments to Xen.
While we do our best to keep up with these changes, Xen may not be compatible
with bleeding edge compilers.

To build with coverage support, enable CONFIG_COVERAGE in Kconfig. The
build system will automatically select the appropriate format based on the
compiler in use.

The resulting binary will record its own coverage while running.

Accessing the raw coverage data

The SYSCTL_coverage_op hypercall is used to interact with the coverage
data. A dom0 userspace helper, xenconv is provided as well, which thinly
wraps this hypercall.

The read subcommand can be used to obtain the raw coverage data:

[root@host ~]# xencov read > coverage.dat

This is toolchain-specific data and needs to be fed back to the appropriate
programs to post-process.

Alternatively, the reset subcommand can be used reset all counters back to
0:

[root@host ~]# xencov reset

GCC coverage

A build using GCC’s coverage will result in *.gcno artefact for every
object file. The raw coverage data needs splitting to form the matching
*.gcda files.

An example of how to view the data is as follows. It uses lcov which is a
graphical frontend to gcov.

	Obtain the raw coverage data from the test host, and pull it back to the
build working tree.

	Use xencov_split to extract the *.gcda files. Note that full build
paths are used by the tools, so splitting needs to output relative to /.

	Use geninfo to post-process the raw data.

	Use genhtml to render the results as HTML.

	View the results in a browser.

xen.git/xen$ ssh root@host xencov read > coverage.dat
xen.git/xen$../tools/xencov_split coverage.dat --output-dir=/
xen.git/xen$ geninfo . -o cov.info
xen.git/xen$ genhtml cov.info -o cov/
xen.git/xen$ $BROWSER cov/index.html

Clang coverage

An example of how to view the data is as follows.

	Obtain the raw coverage data from the test host, and pull it back to the
build working tree.

	Use llvm-profdata to post-process the raw data.

	Use llvm-cov show in combination with xen-syms from the build to
render the results as HTML.

	View the results in a browser.

xen.git/xen$ ssh root@host xencov read > xen.profraw
xen.git/xen$ llvm-profdata merge xen.profraw -o xen.profdata
xen.git/xen$ llvm-cov show -format=html -output-dir=cov/ xen-syms -instr-profile=xen.profdata
xen.git/xen$ $BROWSER cov/index.html

Full documentation on Clang’s coverage capabilities can be found at:
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

x86

	How Xen Boots
	Build

	Boot

How Xen Boots

This is an at-a-glance reference of Xen’s booting capabilities and
expectations.

Build

A build of xen produces xen.gz and optionally xen.efi as final
artefacts.

	For BIOS, Xen supports the Multiboot 1 and 2 protocols.

	For EFI, Xen supports Multiboot 2 with EFI extensions, and native EFI64.

	For virtualisation, Xen supports starting directly with the PVH boot
protocol.

Objects

To begin with, most object files are compiled and linked. This includes the
Multiboot 1 and 2 headers and entrypoints, including the Multiboot 2 tags for
EFI extensions. When CONFIG_PVH_GUEST is selected at build time, this
includes the PVH entrypoint and associated ELF notes.

Depending on whether the compiler supports __attribute__((__ms_abi__)) or
not, either an EFI stub is included which nops/fails applicable setup and
runtime calls, or full EFI support is included.

Protocols and entrypoints

All headers and tags are built in xen/arch/x86/boot/head.S

The Multiboot 1 headers request aligned modules and memory information. Entry
is via the start of the binary image, which is the start symbol. This
entrypoint must be started in 32bit mode.

The Multiboot 2 headers are more flexible, and in addition request that the
image be loaded as high as possible below the 4G boundary, with 2M alignment.
Entry is still via the start symbol as with MB1, and still in 32bit mode.

Headers for the EFI MB2 extensions are also present. These request that
ExitBootServices() not be called, and register __efi_mb2_start as an
alternative entrypoint, entered in 64bit mode.

If CONFIG_PVH_GUEST was selected at build time, an Elf note is included
which indicates the ability to use the PVH boot protocol, and registers
__pvh_start as the entrypoint, entered in 32bit mode.

xen.gz

The objects are linked together to form xen-syms which is an ELF64
executable with full debugging symbols. xen.gz is formed by stripping
xen-syms, then repackaging the result as an ELF32 object with a single
load section at 2MB, and gzip-ing the result. Despite the ELF32 having a
fixed load address, its contents are relocatable.

Any bootloader which unzips the binary and follows the ELF headers will place
it at the 2M boundary and jump to start which is the identified entry
point. However, Xen depends on being entered with the MB1 or MB2 protocols,
and will terminate otherwise.

The MB2+EFI entrypoint depends on being entered with the MB2 protocol, and
will terminate if the entry protocol is wrong, or if EFI details aren’t
provided, or if EFI Boot Services are not available.

xen.efi

When a PEI-capable toolchain is found, the objects are linked together and a
PE32+ binary is created. It can be run directly from the EFI shell, and has
efi_start as its entry symbol.

Note

xen.efi does contain all MB1/MB2/PVH tags included in the rest of the
build. However, entry via anything other than the EFI64 protocol is
unsupported, and won’t work.

Boot

Xen, once loaded into memory, identifies its position in order to relocate
system structures. For 32bit entrypoints, this necessarily requires a call
instruction, and therefore a stack, but none of the ABIs provide one.

Overall, given that on a BIOS-based system, the IVT and BDA occupy the first
5/16ths of the first page of RAM, with the rest free to use, Xen assumes the
top of the page is safe to use.

MISRA C rules for Xen

Note

IMPORTANT All MISRA C rules, text, and examples are copyrighted
by the MISRA Consortium Limited and used with permission.

Please refer to https://www.misra.org.uk/ to obtain a copy of MISRA
C, or for licensing options for other use of the rules.

The following is the list of MISRA C rules that apply to the Xen
hypervisor.

It is possible that in specific circumstances it is best not to follow a
rule because it is not possible or because the alternative leads to
better code quality. Those cases are called “deviations”. They are
permissible as long as they are documented. For details, please refer to
docs/misra/documenting-violations.rst

Other documentation mechanisms are work-in-progress.

The existing codebase is not 100% compliant with the rules. Some of the
violations are meant to be documented as deviations, while some others
should be fixed. Both compliance and documenting deviations on the
existing codebase are work-in-progress.

The list below might need to be updated over time. Reach out to THE REST
maintainers if you want to suggest a change.

	Dir number

	Severity

	Summary

	Notes

	Dir 1.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_01_01.c]

	Required

	Any implementation-defined behaviour on which the output of the
program depends shall be documented and understood

	

	Dir 2.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_02_01.c]

	Required

	All source files shall compile without any compilation errors

	

	Dir 4.7 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_07.c]

	Required

	If a function returns error information then that error
information shall be tested

	

	Dir 4.10 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_10.c]

	Required

	Precautions shall be taken in order to prevent the contents of a
header file being included more than once

	

	Dir 4.11 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_11.c]

	Required

	The validity of values passed to library functions shall be checked

	We do not have libraries in Xen (libfdt and others are not
considered libraries from MISRA C point of view as they are
imported in source form)

	Dir 4.14 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_14.c]

	Required

	The validity of values received from external sources shall be
checked

	

	Rule number

	Severity

	Summary

	Notes

	Rule 1.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_01.c]

	Required

	The program shall contain no violations of the standard C syntax
and constraints, and shall not exceed the implementation’s
translation limits

	We make use of several compiler extensions as documented by
C-language-toolchain.rst

	Rule 1.3 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_03.c]

	Required

	There shall be no occurrence of undefined or critical unspecified
behaviour

	

	Rule 1.4 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/]

	Required

	Emergent language features shall not be used

	Emergent language features, such as C11 features, should not be
confused with similar compiler extensions, which we use. When the
time comes to adopt C11, this rule will be revisited.

	Rule 2.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c]

	Required

	A project shall not contain unreachable code

	

	Rule 2.6 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_06.c]

	Advisory

	A function should not contain unused label declarations

	

	Rule 3.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_01.c]

	Required

	The character sequences /* and // shall not be used within a
comment

	

	Rule 3.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_02.c]

	Required

	Line-splicing shall not be used in // comments

	

	Rule 4.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_01.c]

	Required

	Octal and hexadecimal escape sequences shall be terminated

	

	Rule 4.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_02.c]

	Advisory

	Trigraphs should not be used

	

	Rule 5.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c]

	Required

	External identifiers shall be distinct

	The Xen characters limit for identifiers is 40. Public headers
(xen/include/public/) are allowed to retain longer identifiers
for backward compatibility.

	Rule 5.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_02.c]

	Required

	Identifiers declared in the same scope and name space shall be
distinct

	The Xen characters limit for identifiers is 40. Public headers
(xen/include/public/) are allowed to retain longer identifiers
for backward compatibility.

	Rule 5.3 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_03.c]

	Required

	An identifier declared in an inner scope shall not hide an
identifier declared in an outer scope

	Using macros as macro parameters at invocation time is allowed
even if both macros use identically named local variables, e.g.
max(var0, min(var1, var2))

	Rule 5.4 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_04.c]

	Required

	Macro identifiers shall be distinct

	The Xen characters limit for macro identifiers is 40. Public
headers (xen/include/public/) are allowed to retain longer
identifiers for backward compatibility.

	Rule 5.6 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_06.c]

	Required

	A typedef name shall be a unique identifier

	

	Rule 6.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_01.c]

	Required

	Bit-fields shall only be declared with an appropriate type

	In addition to the C99 types, we also consider appropriate types
enum and all explicitly signed / unsigned integer types.

	Rule 6.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_02.c]

	Required

	Single-bit named bit fields shall not be of a signed type

	

	Rule 7.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_01.c]

	Required

	Octal constants shall not be used

	

	Rule 7.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_02.c]

	Required

	A “u” or “U” suffix shall be applied to all integer constants
that are represented in an unsigned type

	The rule asks that any integer literal that is implicitly
unsigned is made explicitly unsigned by using one of the
indicated suffixes. As an example, on a machine where the int
type is 32-bit wide, 0x77777777 is signed whereas 0x80000000 is
(implicitly) unsigned. In order to comply with the rule, the
latter should be rewritten as either 0x80000000u or 0x80000000U.
Consistency considerations may suggest using the same suffix even
when not required by the rule. For instance, if one has:

Original: f(0x77777777); f(0x80000000);

one should do

Solution 1: f(0x77777777U); f(0x80000000U);

over

Solution 2: f(0x77777777); f(0x80000000U);

after having ascertained that “Solution 1” is compatible with the
intended semantics.

	Rule 7.3 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_03.c]

	Required

	The lowercase character l shall not be used in a literal suffix

	

	Rule 7.4 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_04.c]

	Required

	A string literal shall not be assigned to an object unless the
object type is pointer to const-qualified char

	All “character types” are permitted, as long as the string
element type and the character type match. (There should be no
casts.) Assigning a string literal to any object with type
“pointer to const-qualified void” is allowed.

	Rule 8.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_01.c]

	Required

	Types shall be explicitly specified

	

	Rule 8.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_02.c]

	Required

	Function types shall be in prototype form with named parameters

	

	Rule 8.3 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_03.c]

	Required

	All declarations of an object or function shall use the same
names and type qualifiers

	

	Rule 8.4 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_04.c]

	Required

	A compatible declaration shall be visible when an object or
function with external linkage is defined

	

	Rule 8.5 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c]

	Required

	An external object or function shall be declared once in one and only one file

	

	Rule 8.6 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c]

	Required

	An identifier with external linkage shall have exactly one
external definition

	Declarations without definitions are allowed (specifically when
the definition is compiled-out or optimized-out by the compiler)

	Rule 8.8 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_08.c]

	Required

	The static storage class specifier shall be used in all
declarations of objects and functions that have internal linkage

	

	Rule 8.10 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_10.c]

	Required

	An inline function shall be declared with the static storage class

	gnu_inline (without static) is allowed.

	Rule 8.12 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_12.c]

	Required

	Within an enumerator list the value of an implicitly-specified
enumeration constant shall be unique

	

	Rule 8.14 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_14.c]

	Required

	The restrict type qualifier shall not be used

	

	Rule 9.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_01.c]

	Mandatory

	The value of an object with automatic storage duration shall not
be read before it has been set

	Rule clarification: do not use variables before they are
initialized. An explicit initializer is not necessarily required.
Try reducing the scope of the variable. If an explicit
initializer is added, consider initializing the variable to a
poison value.

	Rule 9.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_02.c]

	Required

	The initializer for an aggregate or union shall be enclosed in
braces

	

	Rule 9.3 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_03.c]

	Required

	Arrays shall not be partially initialized

	{} is also allowed to specify explicit zero-initialization

	Rule 9.4 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_04.c]

	Required

	An element of an object shall not be initialized more than once

	

	Rule 12.5 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_05.c]

	Mandatory

	The sizeof operator shall not have an operand which is a function
parameter declared as “array of type”

	

	Rule 13.6 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_06.c]

	Mandatory

	The operand of the sizeof operator shall not contain any
expression which has potential side effects

	

	Rule 13.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c]

	Required

	Initializer lists shall not contain persistent side effects

	

	Rule 14.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_01.c]

	Required

	A loop counter shall not have essentially floating type

	

	Rule 16.7 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_07.c]

	Required

	A switch-expression shall not have essentially Boolean type

	

	Rule 17.3 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_03.c]

	Mandatory

	A function shall not be declared implicitly

	

	Rule 17.4 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_04.c]

	Mandatory

	All exit paths from a function with non-void return type shall
have an explicit return statement with an expression

	

	Rule 17.6 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_06.c]

	Mandatory

	The declaration of an array parameter shall not contain the
static keyword between the []

	

	Rule 18.3 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_03.c]

	Required

	The relational operators > >= < and <= shall not be applied to objects of pointer type except where they point into the same object

	

	Rule 19.1 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_19_01.c]

	Mandatory

	An object shall not be assigned or copied to an overlapping
object

	Be aware that the static analysis tool Eclair might report
several findings for Rule 19.1 of type “caution”. These are
instances where Eclair is unable to verify that the code is valid
in regard to Rule 19.1. Caution reports are not violations.

	Rule 20.7 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_07.c]

	Required

	Expressions resulting from the expansion of macro parameters
shall be enclosed in parentheses

	

	Rule 20.13 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_13.c]

	Required

	A line whose first token is # shall be a valid preprocessing
directive

	

	Rule 20.14 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_14.c]

	Required

	All #else #elif and #endif preprocessor directives shall reside
in the same file as the #if #ifdef or #ifndef directive to which
they are related

	

	Rule 21.13 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_13.c]

	Mandatory

	Any value passed to a function in <ctype.h> shall be representable as an
unsigned char or be the value EOF

	

	Rule 21.17 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_17.c]

	Mandatory

	Use of the string handling functions from <string.h> shall not result in
accesses beyond the bounds of the objects referenced by their pointer
parameters

	

	Rule 21.18 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_18.c]

	Mandatory

	The size_t argument passed to any function in <string.h> shall have an
appropriate value

	

	Rule 21.19 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_19.c]

	Mandatory

	The pointers returned by the Standard Library functions localeconv,
getenv, setlocale or, strerror shall only be used as if they have
pointer to const-qualified type

	

	Rule 21.20 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_20.c]

	Mandatory

	The pointer returned by the Standard Library functions asctime ctime
gmtime localtime localeconv getenv setlocale or strerror shall not be
used following a subsequent call to the same function

	

	Rule 21.21 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/]

	Required

	The Standard Library function system of <stdlib.h> shall not be used

	

	Rule 22.2 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_02.c]

	Mandatory

	A block of memory shall only be freed if it was allocated by means of a
Standard Library function

	

	Rule 22.4 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_04.c]

	Mandatory

	There shall be no attempt to write to a stream which has been opened as
read-only

	

	Rule 22.5 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_05.c]

	Mandatory

	A pointer to a FILE object shall not be dereferenced

	

	Rule 22.6 [https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_06.c]

	Mandatory

	The value of a pointer to a FILE shall not be used after the associated
stream has been closed

	

Glossary

	control domain

	A domain, commonly dom0, with the permission and responsibility
to create and manage other domains on the system.

	domain

	A domain is Xen’s unit of resource ownership, and generally has at the
minimum some RAM and virtual CPUs.

The terms domain and guest are commonly used
interchangeably, but they mean subtly different things.

A guest is a single, end user, virtual machine.

In some cases, e.g. during live migration, one guest will be comprised of
two domains for a period of time, while it is in transit.

	domid

	The numeric identifier of a running domain. It is unique to a
single instance of Xen, used as the identifier in various APIs, and is
typically allocated sequentially from 0.

	guest

	The term ‘guest’ has two different meanings, depending on context, and
should not be confused with domain.

When discussing a Xen system as a whole, a ‘guest’ refer to a virtual
machine which is the “useful output” of running the system in the first
place (e.g. an end-user VM). Virtual machines providing system services,
(e.g. the control and/or hardware domains), are not considered guests in
this context.

In the code, “guest context” and “guest state” is considered in terms of
the CPU architecture, and contrasted against hypervisor context/state.
In this case, it refers to all code running lower privilege privilege
level the hypervisor. As such, it covers all domains, including ones
providing system services.

	hardware domain

	A domain, commonly dom0, which shares responsibility with Xen
about the system as a whole.

By default it gets all devices, including all disks and network cards, so
is responsible for multiplexing guest I/O.

Index

 C
 | D
 | G
 | H

C

 	
 	control domain

D

 	
 	domain

 	
 	domid

G

 	
 	guest

H

 	
 	hardware domain

Xen Hyperlaunch Device Tree Bindings

The Xen Hyperlaunch device tree adopts the dom0less device tree structure and
extends it to meet the requirements for the Hyperlaunch capability. The primary
difference is the introduction of the hypervisor node that is under the
/chosen node. The move to a dedicated node was driven by:

	Reduces the need to walk over nodes that are not of interest, e.g. only
nodes of interest should be in /chosen/hypervisor

	Allows for the domain construction information to easily be sanitized by
simple removing the /chosen/hypervisor node.

Example Configuration

Below are two example device tree definitions for the hypervisor node. The
first is an example of a multiboot-based configuration for x86 and the second
is a module-based configuration for Arm.

Multiboot x86 Configuration:

hypervisor {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = “hypervisor,xen”

 // Configuration container
 config {
 compatible = "xen,config";

 module {
 compatible = "module,microcode", "multiboot,module";
 mb-index = <1>;
 };

 module {
 compatible = "module,xsm-policy", "multiboot,module";
 mb-index = <2>;
 };
 };

 // Boot Domain definition
 domain {
 compatible = "xen,domain";

 domid = <0x7FF5>;

 // FUNCTION_NONE (0)
 // FUNCTION_BOOT (1 << 0)
 // FUNCTION_CRASH (1 << 1)
 // FUNCTION_CONSOLE (1 << 2)
 // FUNCTION_XENSTORE (1 << 30)
 // FUNCTION_LEGACY_DOM0 (1 << 31)
 functions = <0x00000001>;

 memory = <0x0 0x20000>;
 cpus = <1>;
 module {
 compatible = "module,kernel", "multiboot,module";
 mb-index = <3>;
 };

 module {
 compatible = "module,ramdisk", "multiboot,module";
 mb-index = <4>;
 };
 module {
 compatible = "module,config", "multiboot,module";
 mb-index = <5>;
 };

 // Classic Dom0 definition
 domain {
 compatible = "xen,domain";

 domid = <0>;

 // PERMISSION_NONE (0)
 // PERMISSION_CONTROL (1 << 0)
 // PERMISSION_HARDWARE (1 << 1)
 permissions = <3>;

 // FUNCTION_NONE (0)
 // FUNCTION_BOOT (1 << 0)
 // FUNCTION_CRASH (1 << 1)
 // FUNCTION_CONSOLE (1 << 2)
 // FUNCTION_XENSTORE (1 << 30)
 // FUNCTION_LEGACY_DOM0 (1 << 31)
 functions = <0xC0000006>;

 // MODE_PARAVIRTUALIZED (1 << 0) /* PV | PVH/HVM */
 // MODE_ENABLE_DEVICE_MODEL (1 << 1) /* HVM | PVH */
 // MODE_LONG (1 << 2) /* 64 BIT | 32 BIT */
 mode = <5>; /* 64 BIT, PV */

 // UUID
 domain-uuid = [B3 FB 98 FB 8F 9F 67 A3];

 cpus = <1>;
 memory = <0x0 0x20000>;
 security-id = “dom0_t;

 module {
 compatible = "module,kernel", "multiboot,module";
 mb-index = <6>;
 bootargs = "console=hvc0";
 };
 module {
 compatible = "module,ramdisk", "multiboot,module";
 mb-index = <7>;
 };
};

The multiboot modules supplied when using the above config would be, in order:

	(the above config, compiled)

	CPU microcode

	XSM policy

	kernel for boot domain

	ramdisk for boot domain

	boot domain configuration file

	kernel for the classic dom0 domain

	ramdisk for the classic dom0 domain

Module Arm Configuration:

hypervisor {
 compatible = “hypervisor,xen”

 // Configuration container
 config {
 compatible = "xen,config";

 module {
 compatible = "module,microcode”;
 module-addr = <0x0000ff00 0x80>;
 };

 module {
 compatible = "module,xsm-policy";
 module-addr = <0x0000ff00 0x80>;

 };
 };

 // Boot Domain definition
 domain {
 compatible = "xen,domain";

 domid = <0x7FF5>;

 // FUNCTION_NONE (0)
 // FUNCTION_BOOT (1 << 0)
 // FUNCTION_CRASH (1 << 1)
 // FUNCTION_CONSOLE (1 << 2)
 // FUNCTION_XENSTORE (1 << 30)
 // FUNCTION_LEGACY_DOM0 (1 << 31)
 functions = <0x00000001>;

 memory = <0x0 0x20000>;
 cpus = <1>;
 module {
 compatible = "module,kernel";
 module-addr = <0x0000ff00 0x80>;
 };

 module {
 compatible = "module,ramdisk";
 module-addr = <0x0000ff00 0x80>;
 };
 module {
 compatible = "module,config";
 module-addr = <0x0000ff00 0x80>;
 };

 // Classic Dom0 definition
 domain@0 {
 compatible = "xen,domain";

 domid = <0>;

 // PERMISSION_NONE (0)
 // PERMISSION_CONTROL (1 << 0)
 // PERMISSION_HARDWARE (1 << 1)
 permissions = <3>;

 // FUNCTION_NONE (0)
 // FUNCTION_BOOT (1 << 0)
 // FUNCTION_CRASH (1 << 1)
 // FUNCTION_CONSOLE (1 << 2)
 // FUNCTION_XENSTORE (1 << 30)
 // FUNCTION_LEGACY_DOM0 (1 << 31)
 functions = <0xC0000006>;

 // MODE_PARAVIRTUALIZED (1 << 0) /* PV | PVH/HVM */
 // MODE_ENABLE_DEVICE_MODEL (1 << 1) /* HVM | PVH */
 // MODE_LONG (1 << 2) /* 64 BIT | 32 BIT */
 mode = <5>; /* 64 BIT, PV */

 // UUID
 domain-uuid = [B3 FB 98 FB 8F 9F 67 A3];

 cpus = <1>;
 memory = <0x0 0x20000>;
 security-id = “dom0_t”;

 module {
 compatible = "module,kernel";
 module-addr = <0x0000ff00 0x80>;
 bootargs = "console=hvc0";
 };
 module {
 compatible = "module,ramdisk";
 module-addr = <0x0000ff00 0x80>;
 };
};

The modules that would be supplied when using the above config would be:

	(the above config, compiled into hardware tree)

	CPU microcode

	XSM policy

	kernel for boot domain

	ramdisk for boot domain

	boot domain configuration file

	kernel for the classic dom0 domain

	ramdisk for the classic dom0 domain

The hypervisor device tree would be compiled into the hardware device tree and
provided to Xen using the standard method currently in use. The remaining
modules would need to be loaded in the respective addresses specified in the
module-addr property.

The Hypervisor node

The hypervisor node is a top level container for the domains that will be built
by hypervisor on start up. On the hypervisor node the compatible
property is used to identify the type of hypervisor node present..

	compatible

	Identifies the type of node. Required.

The Config node

A config node is for detailing any modules that are of interest to Xen itself.
For example this would be where Xen would be informed of microcode or XSM
policy locations. If the modules are multiboot modules and are able to be
located by index within the module chain, the mb-index property should be
used to specify the index in the multiboot module chain.. If the module will be
located by physical memory address, then the module-addr property should be
used to identify the location and size of the module.

	compatible

	Identifies the type of node. Required.

The Domain node

A domain node is for describing the construction of a domain. It may provide a
domid property which will be used as the requested domain id for the domain
with a value of “0” signifying to use the next available domain id, which is
the default behavior if omitted. A domain configuration is not able to request
a domid of “0”. After that a domain node may have any of the following
parameters,

	compatible

	Identifies the type of node. Required.

	domid

	Identifies the domid requested to assign to the domain. Required.

	permissions

	This sets what Discretionary Access Control permissions
a domain is assigned. Optional, default is none.

	functions

	This identifies what system functions a domain will fulfill.
Optional, the default is none.

Note

The functions bits that have been selected to indicate
FUNCTION_XENSTORE and FUNCTION_LEGACY_DOM0 are the last two bits
(30, 31) such that should these features ever be fully retired, the flags may
be dropped without leaving a gap in the flag set.

	mode

	The mode the domain will be executed under. Required.

	domain-uuid

	A globally unique identifier for the domain. Optional,
the default is NULL.

	cpus

	The number of vCPUs to be assigned to the domain. Optional,
the default is “1”.

	memory

	The amount of memory to assign to the domain, in KBs.
Required.

	security-id

	The security identity to be assigned to the domain when XSM
is the access control mechanism being used. Optional,
the default is “domu_t”.

The Module node

This node describes a boot module loaded by the boot loader. The required
compatible property follows the format: module,<type> where type can be
“kernel”, “ramdisk”, “device-tree”, “microcode”, “xsm-policy” or “config”. In
the case the module is a multiboot module, the additional property string
“multiboot,module” may be present. One of two properties is required and
identifies how to locate the module. They are the mb-index, used for multiboot
modules, and the module-addr for memory address based location.

	compatible

	This identifies what the module is and thus what the hypervisor
should use the module for during domain construction. Required.

	mb-index

	This identifies the index for this module in the multiboot module chain.
Required for multiboot environments.

	module-addr

	This identifies where in memory this module is located. Required for
non-multiboot environments.

	bootargs

	This is used to provide the boot params to kernel modules.

Note

The bootargs property is intended for situations where the same kernel multiboot module is used for more than one domain.

1 Hyperlaunch Design Document

This post is a Request for Comment on the included v4 of a design document that
describes Hyperlaunch: a new method of launching the Xen hypervisor, relating
to dom0less and work from the Hyperlaunch project. We invite discussion of this
on this list, at the monthly Xen Community Calls, and at dedicated meetings on
this topic in the Xen Working Group which will be announced in advance on the
Xen Development mailing list.

Contents

	1 Hyperlaunch Design Document

	1.1 Introduction

	1.2 Document Structure

	1.3 Approach

	1.3.1 Objectives

	1.4 Requirements and Design

	1.4.1 Hypervisor Launch Landscape

	1.4.2 Domain Construction

	1.4.3 Common Boot Configurations

	1.4.4 Hyperlaunch Disaggregated Launch

	1.4.5 Overview of Hyperlaunch Flow

	1.4.6 Structuring of Hyperlaunch

	1.5 Communication of Domain Configurations

	1.6 Appendix

	1.6.1 Appendix 1: Flow Sequence of Steps of a Hyperlaunch Boot

	1.6.2 Appendix 2: Considerations in Naming the Hyperlaunch Feature

	1.6.3 Appendix 3: Terminology

	1.6.4 Appendix 4: Copyright License

1.1 Introduction

This document describes the design and motivation for the funded development of
a new, flexible system for launching the Xen hypervisor and virtual machines
named: “Hyperlaunch”.

The design enables seamless transition for existing systems that require a
dom0, and provides a new general capability to build and launch alternative
configurations of virtual machines, including support for static partitioning
and accelerated start of VMs during host boot, while adhering to the principles
of least privilege. It incorporates the existing dom0less functionality,
extended to fold in the new developments from the Hyperlaunch project, with
support for both x86 and Arm platform architectures, building upon and
replacing the earlier ‘late hardware domain’ feature for disaggregation of
dom0.

Hyperlaunch is designed to be flexible and reusable across multiple use cases,
and our aim is to ensure that it is capable, widely exercised, comprehensively
tested, and well understood by the Xen community.

1.2 Document Structure

This is the primary design document for Hyperlaunch, to provide an overview of
the feature. Separate additional documents will cover specific aspects of
Hyperlaunch in further detail, including:

	The Device Tree specification for Hyperlaunch metadata

	New Domain Roles for Xen and the Xen Security Modules (XSM) policy

	Passthrough of PCI devices with Hyperlaunch

1.3 Approach

Born out of improving support for Dynamic Root of Trust for Measurement (DRTM),
the Hyperlaunch project is focused on restructuring the system launch of Xen.
The Hyperlaunch design provides a security architecture that builds on the
principles of Least Privilege and Strong Isolation, achieving this through the
disaggregation of system functions. It enables this with the introduction of a
boot domain that works in conjunction with the hypervisor to provide the
ability to launch multiple domains as part of host boot while maintaining a
least privilege implementation.

While the Hyperlaunch project inception was and continues to be driven by a
focus on security through disaggregation, there are multiple use cases with a
non-security focus that require or benefit from the ability to launch multiple
domains at host boot. This was proven by the need that drove the implementation
of the dom0less capability in the Arm branch of Xen.

Hyperlaunch is designed to be flexible and reusable across multiple use cases,
and our aim is to ensure that it is capable, widely exercised, comprehensively
tested, and provides a robust foundation for current and emerging system launch
requirements of the Xen community.

1.3.1 Objectives

	In general strive to maintain compatibility with existing Xen behavior

	A default build of the hypervisor should be capable of booting both legacy-compatible and new styles of launch:

	classic Xen boot: starting a single, privileged Dom0

	classic Xen boot with late hardware domain: starting a Dom0 that transitions hardware access/control to another domain

	a dom0less boot: starting multiple domains without privilege assignment controls

	Hyperlaunch: starting one or more VMs, with flexible configuration

	Preferred that it be managed via KCONFIG options to govern inclusion of support for each style

	The selection between classic boot and Hyperlaunch boot should be automatic

	Preferred that it not require a kernel command line parameter for selection

	It should not require modification to boot loaders

	It should provide a user friendly interface for its configuration and management

	It must provide a method for building systems that fallback to console access in the event of misconfiguration

	It should be able to boot an x86 Xen environment without the need for a Dom0 domain

1.4 Requirements and Design

Hyperlaunch is defined as the ability of a hypervisor to construct and start
one or more virtual machines at system launch in a specific way. A hypervisor
can support one or both modes of configuration, Hyperlaunch Static and
Hyperlaunch Dynamic. The Hyperlaunch Static mode functions as a static
partitioning hypervisor ensuring only the virtual machines started at system
launch are running on the system. The Hyperlaunch Dynamic mode functions as a
dynamic hypervisor allowing for additional virtual machines to be started after
the initial virtual machines have started. The Xen hypervisor is capable of
both modes of configuration from the same binary and when paired with its XSM
flask, provides strong controls that enable fine grained system partitioning.

1.4.1 Hypervisor Launch Landscape

This comparison table presents the distinctive capabilities of Hyperlaunch with
reference to existing launch configurations currently available in Xen and
other hypervisors.

+---------------+-----------+------------+-----------+-------------+---------------------+
| **Xen Dom0** | **Linux** | **Late** | **Jail** | **Xen** | **Xen Hyperlaunch** |
| **(Classic)** | **KVM** | **HW Dom** | **house** | **dom0less**+---------+-----------+
| | | | | | Static | Dynamic |
+===============+===========+============+===========+=============+=========+===========+
| Hypervisor able to launch multiple VMs during host boot |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | Y | Y | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Hypervisor supports Static Partitioning |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | Y | Y | Y | |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Able to launch VMs dynamically after host boot |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Y | Y | Y* | Y | Y* | | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Supports strong isolation between all VMs started at host boot |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | Y | Y | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Enables flexible sequencing of VM start during host boot |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | | | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Prevent all-powerful static root domain being launched at boot |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | | Y* | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Operates without a Highly-privileged management VM (eg. Dom0) |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | Y* | | Y* | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Operates without a privileged toolstack VM (Control Domain) |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | | Y* | Y | |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Extensible VM configuration applied before launch of VMs at host boot |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | | | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Flexible granular assignment of permissions and functions to VMs |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | | | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| Supports extensible VM measurement architecture for DRTM and attestation |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | | | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| PCI passthrough configured at host boot |
+---------------+-----------+------------+-----------+-------------+---------+-----------+
| | | | | | Y | Y |
+---------------+-----------+------------+-----------+-------------+---------+-----------+

1.4.2 Domain Construction

An important aspect of the Hyperlaunch architecture is that the hypervisor
performs domain construction for all the Initial Domains, ie. it builds each
domain that is described in the Launch Control Module. More specifically, the
hypervisor will perform the function of domain creation for each Initial
Domain: it allocates the unique domain identifier assigned to the virtual
machine and records essential metadata about it in the internal data structure
that enables scheduling the domain to run. It will also perform basic domain
construction: build the initial page tables with data from the kernel and
initial ramdisk supplied, and as appropriate for the domain type, populate the
p2m table and ACPI tables.

Subsequent to this, the boot domain can apply additional configuration to the
initial domains from the data in the LCM, in extended domain construction.

The benefits of this structure include:

	Security: Contrains the permissions required by the boot domain: it does not
require the capability to create domains in this structure. This aligns with
the principles of least privilege.

	Flexibility: Enables policy-based dynamic assignment of hardware by the boot
domain, customizable according to use-case and able to adapt to hardware
discovery

	Compatibility: Supports reuse of familiar tools with use-case customized boot
domains.

	Commonality: Reuses the same logic for initial basic domain building across
diverse Xen deployments.

	It aligns the x86 initial domain construction with the existing Arm
dom0less feature for construction of multiple domains at boot.

	The boot domain implementation may vary significantly with different
deployment use cases, whereas the hypervisor implementation is
common.

	Correctness: Increases confidence in the implementation of domain
construction, since it is performed by the hypervisor in well maintained and
centrally tested logic.

	Performance: Enables launch for configurations where a fast start of
multiple domains at boot is a requirement.

	Capability: Supports launch of advanced configurations where a sequenced
start of multiple domains is required, or multiple domains are involved in
startup of the running system configuration

	eg. for PCI passthrough on systems where the toolstack runs in a
separate domain to the hardware management.

Please, see the ‘Hyperlaunch Device Tree’ design document, which describes the
configuration module that is provided to the hypervisor by the bootloader.

The hypervisor determines how these domains are started as host boot completes:
in some systems the Boot Domain acts upon the extended boot configuration
supplied as part of launch, performing configuration tasks for preparing the
other domains for the hypervisor to commence running them.

1.4.3 Common Boot Configurations

When looking across those that have expressed interest or discussed a need for
launching multiple domains at host boot, the Hyperlaunch approach is to provide
the means to start nearly any combination of domains. Below is an enumerated
selection of common boot configurations for reference in the following section.

1.4.3.1 Dynamic Launch with a Highly-Privileged Domain 0

	Hyperlaunch Classic: Dom0

	This configuration mimics the classic Xen start and domain construction
where a single domain is constructed with all privileges and functions for
managing hardware and running virtualization toolstack software.

	Hyperlaunch Classic: Extended Launch Dom0

	This configuration is where a Dom0 is started via a Boot Domain that runs
first. This is for cases where some preprocessing in a less privileged domain
is required before starting the all-privileged Domain 0.

	Hyperlaunch Classic: Basic Cloud

	This configuration constructs a Dom0 that is started in parallel with some
number of workload domains.

	Hyperlaunch Classic: Cloud

	This configuration builds a Dom0 and some number of workload domains, launched
via a Boot Domain that runs first.

1.4.3.2 Static Launch Configurations: without a Domain 0 or a Control Domain

	Hyperlaunch Static: Basic

	Simple static partitioning where all domains that can be run on this system are
built and started during host boot and where no domain is started with the
Control Domain permissions, thus making it not possible to create/start any
further new domains.

	Hyperlaunch Static: Standard

	This is a variation of the “Hyperlaunch Static: Basic” static partitioning
configuration with the introduction of a Boot Domain. This configuration allows
for use of a Boot Domain to be able to apply extended configuration
to the Initial Domains before they are started and
sequence the order in which they start.

	Hyperlaunch Static: Disaggregated

	This is a variation of the “Hyperlaunch Static: Standard” configuration with
the introduction of a Boot Domain and an illustration that some functions can
be disaggregated to dedicated domains.

1.4.3.3 Dynamic Launch of Disaggregated System Configurations

	Hyperlaunch Dynamic: Hardware Domain

	This configuration mimics the existing Xen feature late hardware domain with
the one difference being that the hardware domain is constructed by the
hypervisor at startup instead of later by Dom0.

	Hyperlaunch Dynamic: Flexible Disaggregation

	This configuration is similar to the “Hyperlaunch Classic: Dom0” configuration
except that it includes starting a separate hardware domain during Xen startup.
It is also similar to “Hyperlaunch Dynamic: Hardware Domain” configuration, but
it launches via a Boot Domain that runs first.

	Hyperlaunch Dynamic: Full Disaggregation

	In this configuration it is demonstrated how it is possible to start a fully
disaggregated system: the virtualization toolstack runs in a Control Domain,
separate from the domains responsible for managing hardware, XenStore, the Xen
Console and Crash functions, each launched via a Boot Domain.

1.4.3.4 Example Use Cases and Configurations

The following example use cases can be matched to configurations listed in the
previous section.

Use case: Modern cloud hypervisor

Option: Hyperlaunch Classic: Cloud

This configuration will support strong isolation for virtual TPM domains and
measured launch in support of attestation to infrastructure management, while
allowing the use of existing Dom0 virtualization toolstack software.

Use case: Edge device with security or safety requirements

Option: Hyperlaunch Static: Boot

This configuration runs without requiring a highly-privileged Dom0, and enables
extended VM configuration to be applied to the Initial VMs prior to launching
them, optionally in a sequenced start.

Use case: Client hypervisor

Option: Hyperlaunch Dynamic: Flexible Disaggregation

Option: Hyperlaunch Dynamic: Full Disaggregation

These configurations enable dynamic client workloads, strong isolation for the
domain running the virtualization toolstack software and each domain managing
hardware, with PCI passthrough performed during host boot and support for
measured launch.

1.4.4 Hyperlaunch Disaggregated Launch

Existing in Xen today are two primary permissions, control domain and
hardware domain, and two functions, console domain and xenstore domain,
that can be assigned to a domain. Traditionally all of these permissions and
functions are all assigned to Dom0 at start and can then be delegated to other
domains created by the toolstack in Dom0. With Hyperlaunch it becomes possible
to assign these permissions and functions to any domain for which there is a
definition provided at startup.

Additionally, two further functions are introduced: the recovery domain,
intended to assist with recovery from failures encountered starting VMs during
host boot, and the boot domain, for performing aspects of domain construction
during startup.

Supporting the booting of each of the above common boot configurations is
accomplished by considering the set of initial domains and the assignment of
Xen’s permissions and functions, including the ones introduced by Hyperlaunch,
to these domains. A discussion of these will be covered later but for now they
are laid out in a table with a mapping to the common boot configurations. This
table is not intended to be an exhaustive list of configurations and does not
account for flask policy specified functions that are use case specific.

In the table each number represents a separate domain being
constructed by the Hyperlaunch construction path as Xen starts, and the
designator, {n} signifies that there may be “n” additional domains that may
be constructed that do not have any special role for a general Xen system.

+-------------------+------------------+-----------------------------------+
| Configuration | Permission | Function |
| +------+------+----+------+--------+--------+----------+
| | None | Ctrl | HW | Boot |Recovery| Console| Xenstore |
+===================+======+======+====+======+========+========+==========+
| Classic: Dom0 | | 0 | 0 | | 0 | 0 | 0 |
+-------------------+------+------+----+------+--------+--------+----------+
| Classic: Extended | | 1 | 1 | 0 | 1 | 1 | 1 |
| Launch Dom0 | | | | | | | |
+-------------------+------+------+----+------+--------+--------+----------+
| Classic: | {n} | 0 | 0 | | 0 | 0 | 0 |
| Basic Cloud | | | | | | | |
+-------------------+------+------+----+------+--------+--------+----------+
| Classic: Cloud | {n} | 1 | 1 | 0 | 1 | 1 | 1 |
+-------------------+------+------+----+------+--------+--------+----------+
| Static: Basic | {n} | | 0 | | 0 | 0 | 0 |
+-------------------+------+------+----+------+--------+--------+----------+
| Static: Standard | {n} | | 1 | 0 | 1 | 1 | 1 |
+-------------------+------+------+----+------+--------+--------+----------+
| Static: | {n} | | 2 | 0 | 3 | 4 | 1 |
| Disaggregated | | | | | | | |
+-------------------+------+------+----+------+--------+--------+----------+
| Dynamic: | | 0 | 1 | | 0 | 0 | 0 |
| Hardware Domain | | | | | | | |
+-------------------+------+------+----+------+--------+--------+----------+
| Dynamic: Flexible | {n} | 1 | 2 | 0 | 1 | 1 | 1 |
| Disaggregation | | | | | | | |
+-------------------+------+------+----+------+--------+--------+----------+
| Dynamic: Full | {n} | 2 | 3 | 0 | 4 | 5 | 1 |
| Disaggregation | | | | | | | |
+-------------------+------+------+----+------+--------+--------+----------+

1.4.5 Overview of Hyperlaunch Flow

Before delving into Hyperlaunch, a good basis to start with is an understanding
of the current process to create a domain. A way to view this process starts
with the core configuration which is the information the hypervisor requires to
make the call to domain_create, followed by basic construction to provide the
memory image to run, including the kernel and ramdisk. A subsequent step
applies the extended configuration used by the toolstack to provide a domain
with any additional configuration information. Until the extended configuration
is completed, a domain has access to no resources except its allocated vcpus
and memory. The exception to this is Dom0, which the hypervisor explicitly
grants control and access to all system resources, except for those that only
the hypervisor should have control over. This exception for Dom0 is driven by
the system structure with a monolithic Dom0 domain predating introduction of
support for disaggregation into Xen, and the corresponding default assignment
of multiple roles within the Xen system to Dom0.

While not a different domain creation path, there does exist the Hardware
Domain (hwdom), sometimes also referred to as late-Dom0. It is an early effort
to disaggregate Dom0’s roles into a separate control domain and hardware
domain. This capability is activated by the passing of a domain id to the
hardware_dom kernel command line parameter, and the Xen hypervisor will then
flag that domain id as the hardware domain. Later when the toolstack constructs
a domain with that domain id as the requested domid, the hypervisor will
transfer all device I/O from Dom0 to this domain. In addition it will also
transfer the “host shutdown on domain shutdown” flag from Dom0 to the hardware
domain. It is worth mentioning that this approach for disaggregation was
created in this manner due to the inability of Xen to launch more than one
domain at startup.

1.4.5.1 Hyperlaunch Xen startup

The Hyperlaunch approach’s primary focus is on how to assign the roles
traditionally granted to Dom0 to one or more domains at host boot. While the
statement is simple to make, the implications are not trivial by any means.
This also explains why the Hyperlaunch approach is orthogonal to the existing
dom0less capability. The dom0less capability focuses on enabling the launch of
multiple domains in parallel with Dom0 at host boot. A corollary for dom0less
is that for systems that don’t require Dom0 after all guest domains have
started, they are able to do the host boot without a Dom0. Though it should be
noted that it may be possible to start Dom0 at a later point. Whereas with
Hyperlaunch, its approach of separating Dom0’s roles requires the ability to
launch multiple domains at host boot. The direct consequences from this
approach are profound and provide a myriad of possible configurations for which
a sample of common boot configurations were already presented.

To enable the Hyperlaunch approach a new alternative path for host boot within
the hypervisor must be introduced. This alternative path effectively branches
just before the current point of Dom0 construction and begins an alternate
means of system construction. The determination if this alternate path should
be taken is through the inspection of the boot chain. If the bootloader has
loaded a specific configuration, as described later, it will enable Xen to
detect that a Hyperlaunch configuration has been provided. Once a Hyperlaunch
configuration is detected, this alternate path can be thought of as occurring
in phases: domain creation, domain preparation, and launch finalization.

Domain Creation

The domain creation phase begins with Xen parsing the bootloader provided
material, to understand the content of the modules provided. It will then load
any microcode or XSM policy it discovers. For each domain configuration Xen
finds, it parses the configuration to construct the necessary domain definition
to instantiate an instance of the domain and leave it in a paused state. When
all domain configurations have been instantiated as domains, if one of them is
flagged as the Boot Domain, that domain will be unpaused starting the domain
preparation phase. If there is no Boot Domain defined, then the domain
preparation phase will be skipped and Xen will trigger the launch finalization
phase.

Domain Preparation Phase

The domain preparation phase is an optional check point for the execution of a
workload specific domain, the Boot Domain. While the Boot Domain is the first
domain to run and has some degree of control over the system, it is extremely
restricted in both system resource access and hypervisor operations. Its
purpose is to:

	Access the configuration provided by the bootloader

	Finalize the configuration of the domains

	Conduct any setup and launch related operations

	Do an ordered unpause of domains that require an ordered start

When the Boot Domain has completed, it will notify the hypervisor that it is
done triggering the launch finalization phase.

Launch Finalization

The hypervisor handles the launch finalization phase which is equivalent to the
clean up phase. As such the steps taken by the hypervisor, not necessarily in
implementation order, are as follows,

	Free the boot module chain

	If a Boot Domain was used, reclaim Boot Domain resources

	Unpause any domains still in a paused state

	Boot Domain uses a reserved function thus can never be respawned

While the focus thus far has been on how the Hyperlaunch capability will work,
it is worth mentioning what it does not do or limit from occurring. It does not
stop or inhibit the assigning of the control domain role which gives the domain
the ability to create, start, stop, restart, and destroy domains or the
hardware domain role which gives access to all I/O devices except those that
the hypervisor has reserved for itself. In particular it is still possible to
construct a domain with all the privileged roles, i.e. a Dom0, with or without
the domain id being zero. In fact what limitations are imposed now become fully
configurable without the risk of circumvention by an all privileged domain.

1.4.6 Structuring of Hyperlaunch

The structure of Hyperlaunch is built around the existing capabilities of the
host boot protocol. This approach was driven by the objective not to require
modifications to the boot loader. The only requirement is that the boot loader
supports the Multiboot2 (MB2) protocol. For UEFI boot, our recommendation is to
use GRUB.efi to load Xen and the initial domain materials via the multiboot2
method. On Arm platforms, Hyperlaunch is compatible with the existing interface
for boot into the hypervisor.

1.4.6.1 x86 Multiboot2

The MB2 protocol has no concept of a manifest to tell the initial kernel what
is contained in the chain, leaving it to the kernel to impose a loading
convention, use magic number identification, or both. When considering the
passing of multiple kernels, ramdisks, and domain configuration along with any
existing modules already passed, there is no sane convention that could be
imposed and magic number identification is nearly impossible when considering
the objective not to impose unnecessary complication to the hypervisor.

As it was alluded to previously, a manifest describing the contents in the MB2
chain and how they relate within a Xen context is needed. To address this need
the Launch Control Module (LCM) was designed to provide such a manifest. The
LCM was designed to have a specific set of properties,

	minimize the complexity of the parsing logic required by the hypervisor

	allow for expanding and optional configuration fragments without breaking
backwards compatibility

To enable automatic detection of a Hyperlaunch configuration, the LCM must be
the first MB2 module in the MB2 module chain. The LCM is implemented using the
Device Tree as defined in the Hyperlaunch Device Tree design document. With the
LCM implemented in Device Tree, it has a magic number that enables the
hypervisor to detect its presence when used in a Multiboot2 module chain. The
hypervisor can confirm that it is a proper LCM Device Tree by checking for a
compliant Hyperlaunch Device Tree. The Hyperlaunch Device Tree nodes are
designed to allow,

	for the hypervisor to parse only those entries it understands,

	for packing custom information for a custom boot domain,

	the ability to use a new LCM with an older hypervisor,

	and the ability to use an older LCM with a new hypervisor.

1.4.6.2 Arm Device Tree

As discussed the LCM is in Device Tree format and was designed to co-exist in
the Device Tree ecosystem, and in particular in parallel with dom0less Device
Tree entries. On Arm, Xen is already designed to boot from a host Device Tree
description (dtb) file and the LCM entries can be embedded into this host dtb
file. This makes detecting the LCM entries and supporting Hyperlaunch on Arm
relatively straight forward. Relative to the described x86 approach, at the
point where Xen inspects the first MB2 module, on Arm Xen will check if the top
level LCM node exists in the host dtb file. If the LCM node does exist, then at
that point it will enter into the same code path as the x86 entry would go.

1.4.6.3 Xen hypervisor

It was previously discussed at a higher level of the new host boot flow that
will be introduced. Within this new flow is the configuration parsing and
domain creation phase which will be expanded upon here. The hypervisor will
inspect the LCM for a config node and if found will iterate through all modules
nodes. The module nodes are used to identify if any modules contain microcode
or an XSM policy. As it processes domain nodes, it will construct the domain
using the node properties and the modules nodes. Once it has completed
iterating through all the entries in the LCM, if a constructed domain has the
Boot Domain attribute, it will then be unpaused. Otherwise the hypervisor will
start the launch finalization phase.

1.4.6.4 Boot Domain

Traditionally domain creation was controlled by the user within the Dom0
environment whereby custom toolstacks could be implemented to impose
requirements on the process. The Boot Domain is a means to enable the user to
continue to maintain a degree of that control over domain creation but within a
limited privilege environment. The Boot Domain will have access to the LCM and
the boot chain along with access to a subset of the hypercall operations. When
the Boot Domain is finished it will notify the hypervisor through a hypercall
op.

1.4.6.5 Recovery Domain

With the existing Dom0 host boot path, when a failure occurs there are several
assumptions that can safely be made to get the user to a console for
troubleshooting. With the Hyperlaunch host boot path those assumptions can no
longer be made, thus a means is needed to get the user to a console in the case
of a recoverable failure. The recovery domain is configured by a domain
configuration entry in the LCM, in the same manner as the other initial
domains, and it will not be unpaused at launch finalization unless a failure is
encountered starting the initial domains.

Xen has existing support for a Crash Environment where memory can be reserved
at host boot and a kernel loaded into it, to be jumped into at any point while
the system is running when a crash is detected. The Recovery Domain
functionality is a separate, complementary capability. The Crash Environment
replaces the previously active hypervisor and running guests, and enables a
process for mounting disks to write out log information prior to rebooting the
system. In contrast, the Recovery Domain is able to use the functionality of
the Xen hypervisor, that is still present and running, to perform recovery
handling for errors encountered with starting the initial domains.

Deferred Design

To be determined:

	Define what is detected as a crash

	Explain how crash detection is performed and which components are involved

	Explain how the recovery domain is unpaused

	Explain how and when the resources assigned to the recovery domain are reclaimed

	Define what the recovery domain is able to do

	Determine what permissions the recovery domain requires to perform its job

1.4.6.6 Control Domain

The concept of the Control Domain already exists within Xen as a boolean,
is_privileged, that governs access to many of the privileged interfaces of
the hypervisor that support a domain running a virtualization system toolstack.
Hyperlaunch will allow the is_privileged flag to be set on any domain that is
created at launch, rather than only a Dom0. It may potentially be set on
multiple domains.

1.4.6.7 Hardware Domain

The Hardware Domain is also an existing concept for Xen that is enabled through
the is_hardware_domain check. With Hyperlaunch the previous process of I/O
accesses being assigned to Dom0 for later transfer to the hardware domain would
no longer be required. Instead during the configuration phase the Xen
hypervisor would directly assign the I/O accesses to the domain with the
hardware domain permission bit enabled.

1.4.6.8 Console Domain

Traditionally the Xen console is assigned to the control domain and then
reassignable by the toolstack to another domain. With Hyperlaunch it becomes
possible to construct a boot configuration where there is no control domain or
have a use case where the Xen console needs to be isolated. As such it becomes
necessary to be able to designate which of the initial domains should be
assigned the Xen console. Therefore Hyperlaunch introduces the ability to
specify an initial domain which the console is assigned along with a convention
of ordered assignment for when there is no explicit assignment.

1.5 Communication of Domain Configurations

There are several standard methods for an Operating System to access machine
configuration and environment information: ACPI is common on x86 systems,
whereas Device Tree is more typical on Arm platforms. There are currently
implementations of both in Xen.

	For dom0less, guest Device Trees are dynamically constructed by the
hypervisor to convey domain configuration data

	For PVH dom0 on x86, ACPI tables are built by the hypervisor before the
domain is started

Note that both of these mechanisms convey static data that is fixed prior to
the point of domain construction. Hyperlaunch will retain both the existing
ACPI and Device Tree methods.

Communication of data between a Boot Domain and a Control Domain is of note
since they may not be running concurrently: the method used will depend on
their specific implementations, but one option available is to use Xen’s hypfs
for transfer of basic data to support system bootstrap.

1.6 Appendix

1.6.1 Appendix 1: Flow Sequence of Steps of a Hyperlaunch Boot

Provided here is an ordered flow of a Hyperlaunch with a highlight logic
decision points. Not all branch points are recorded, specifically for the
variety of error conditions that may occur.

1. Hypervisor Startup:
2a. (x86) Inspect first module provided by the bootloader
 a. Is the module an LCM
 i. YES: proceed with the Hyperlaunch host boot path
 ii. NO: proceed with a Dom0 host boot path
2b. (Arm) Inspect host dtb for `/chosen/hypervisor` node
 a. Is the LCM present
 i. YES: proceed with the Hyperlaunch host boot path
 ii. NO: proceed with a Dom0/dom0less host boot path
3. Iterate through the LCM entries looking for the module description
 entry
 a. Check if any of the modules are microcode or policy and if so,
 load
4. Iterate through the LCM entries processing all domain description
 entries
 a. Use the details from the Basic Configuration to call
 `domain_create`
 b. Record if a domain is flagged as the Boot Domain
 c. Record if a domain is flagged as the Recovery Domain
5. Was a Boot Domain created
 a. YES:
 i. Attach console to Boot Domain
 ii. Unpause Boot Domain
 iii. Goto Boot Domain (step 6)
 b. NO: Goto Launch Finalization (step 10)
6. Boot Domain:
7. Boot Domain comes online and may do any of the following actions
 a. Process the LCM
 b. Validate the MB2 chain
 c. Make additional configuration settings for staged domains
 d. Unpause any precursor domains
 e. Set any runtime configurations
8. Boot Domain does any necessary cleanup
9. Boot Domain make hypercall op call to signal it is finished
 i. Hypervisor reclaims all Boot Domain resources
 ii. Hypervisor records that the Boot Domain ran
 ii. Goto Launch Finalization (step 9)
10. Launch Finalization
11. If a configured domain was flagged to have the console, the
 hypervisor assigns it
12. The hypervisor clears the LCM and bootloader loaded module,
 reclaiming the memory
13. The hypervisor iterates through domains unpausing any domain not
 flagged as the recovery domain

1.6.2 Appendix 2: Considerations in Naming the Hyperlaunch Feature

	The term “Launch” is preferred over “Boot”

	Multiple individual component boots can occur in the new system start
process; Launch is preferable for describing the whole process

	Fortunately there is consensus in the current group of stakeholders
that the term “Launch” is good and appropriate

	The names we define must support becoming meaningful and simple to use
outside the Xen community

	They must be able to be resolved quickly via search engine to a clear
explanation (eg. Xen marketing material, documentation or wiki)

	We prefer that the terms be helpful for marketing communications

	Consequence: avoid the term “domain” which is Xen-specific and
requires a definition to be provided each time when used elsewhere

	There is a need to communicate that Xen is capable of being used as a Static
Partitioning hypervisor

	The community members using and maintaining dom0less are the current
primary stakeholders for this

	There is a need to communicate that the new launch functionality provides new
capabilities not available elsewhere, and is more than just supporting Static
Partitioning

	No other hypervisor known to the authors of this document is capable
of providing what Hyperlaunch will be able to do. The launch sequence is
designed to:

	Remove dependency on a single, highly-privileged initial domain

	Allow the initial domains started to be independent and fully
isolated from each other

	Support configurations where no further VMs can be launched
once the initial domains have started

	Use a standard, extensible format for conveying VM
configuration data

	Ensure that domain building of all initial domains is
performed by the hypervisor from materials supplied by the
bootloader

	Enable flexible configuration to be applied to all initial
domains by an optional Boot Domain, that runs with limited
privilege, before any other domain starts and obtains the VM
configuration data from the bootloader materials via the
hypervisor

	Enable measurements of all of the boot materials prior to
their use, in a sequence with minimized privilege

	Support use-case-specific customized Boot Domains

	Complement the hypervisor’s existing ability to enforce
policy-based Mandatory Access Control

	“Static” and “Dynamic” have different and important meanings in different
communities

	Static and Dynamic Partitioning describe the ability to create new
virtual machines, or not, after the initial host boot process
completes

	Static and Dynamic Root of Trust describe the nature of the trust
chain for a measured launch. In this case Static is referring to the
fact that the trust chain is fixed and non-repeatable until the next
host reboot or shutdown. Whereas Dynamic in this case refers to the
ability to conduct the measured launch at any time and potentially
multiple times before the next host reboot or shutdown.

	We will be using Hyperlaunch with both Static and Dynamic
Roots of Trust, to launch both Static and Dynamically
Partitioned Systems, and being clear about exactly which
combination is being started will be very important (eg. for
certification processes)

	Consequence: uses of “Static” and “Dynamic” need to be qualified if
they are incorporated into the naming of this functionality

	This can be done by adding the preceding, stronger branded
term: “Hyperlaunch”, before “Static” or “Dynamic”

	ie. “Hyperlaunch Static” describes launch of a
Statically Partitioned system

	and “Hyperlaunch Dynamic” describes launch of a
Dynamically Partitioned system.

	In practice, this means that “Hyperlaunch Static” describes
starting a Static Partitioned system where no new domains can
be started later (ie. no VM has the Control Domain
permission), whereas “Hyperlaunch Dynamic” will launch some
VM with the Control Domain permission, able to create VMs
dynamically at a later point.

Naming Proposal:

	New Term: “Hyperlaunch” : the ability of a hypervisor to construct and start
one or more virtual machines at system launch, in the following manner:

	The hypervisor must build all of the domains that it starts at host
boot

	Similar to the way the dom0 domain is built by the hypervisor
today, and how dom0less works: it will run a loop to build
them all, driven from the configuration provided

	This is a requirement for ensuring that there is Strong
Isolation between each of the initial VMs

	A single file contains the VM configs (“Launch Control Module”: LCM,
in Device Tree binary format) is provided to the hypervisor

	The hypervisor parses it and builds domains

	If the LCM config says that a Boot Domain should run first,
then the LCM file itself is made available to the Boot Domain
for it to parse and act on, to invoke operations via the
hypervisor to apply additional configuration to the other VMs
(ie. executing a privilege-constrained toolstack)

	New Term: “Hyperlaunch Static”: starts a Static Partitioned system, where
only the virtual machines started at system launch are running on the system

	New Term: “Hyperlaunch Dynamic”: starts a system where virtual machines may
be dynamically added after the initial virtual machines have started.

In the default configuration, Xen will be capable of both styles of Hyperlaunch
from the same hypervisor binary, when paired with its XSM flask, provides
strong controls that enable fine grained system partitioning.

	Retiring Term: “DomB”: will no longer be used to describe the optional first
domain that is started. It is replaced with the more general term: “Boot
Domain”.

	Retiring Term: “Dom0less”: it is to be replaced with “Hyperlaunch Static”

1.6.3 Appendix 3: Terminology

To help ensure clarity in reading this document, the following is the
definition of terminology used within this document.

	Basic Configuration

	the minimal information the hypervisor requires to instantiate a domain instance

	Boot Domain

	a domain with limited privileges launched by the hypervisor during a
Multiple Domain Boot that runs as the first domain started. In the Hyperlaunch
architecture, it is responsible for assisting with higher level operations of
the domain setup process.

	Classic Launch

	a backwards-compatible host boot that ends with the launch of a single domain (Dom0)

	Console Domain

	a domain that has the Xen console assigned to it

	Control Domain

	a privileged domain that has been granted Control Domain permissions which
are those that are required by the Xen toolstack for managing other domains.
These permissions are a subset of those that are granted to Dom0.

	Device Tree

	a standardized data structure, with defined file formats, for describing
initial system configuration

	Disaggregation

	the separation of system roles and responsibilities across multiple
connected components that work together to provide functionality

	Dom0

	the highly-privileged, first and only domain started at host boot on a
conventional Xen system

	Dom0less

	an existing feature of Xen on Arm that provides Multiple Domain Boot

	Domain

	a running instance of a virtual machine; (as the term is commonly used in
the Xen Community)

	DomB

	the former name for Hyperlaunch

	Extended Configuration

	any configuration options for a domain beyond its Basic Configuration

	Hardware Domain

	a privileged domain that has been granted permissions to access and manage
host hardware. These permissions are a subset of those that are granted to
Dom0.

	Host Boot

	the system startup of Xen using the configuration provided by the bootloader

	Hyperlaunch

	a flexible host boot that ends with the launch of one or more domains

	Initial Domain

	a domain that is described in the LCM that is run as part of a multiple
domain boot. This includes the Boot Domain, Recovery Domain and all Launched
Domains.

	Late Hardware Domain

	a Hardware Domain that is launched after host boot has already completed
with a running Dom0. When the Late Hardware Domain is started, Dom0
relinquishes and transfers the permissions to access and manage host hardware
to it..

	Launch Control Module (LCM)

	A file supplied to the hypervisor by the bootloader that contains
configuration data for the hypervisor and the initial set of virtual machines
to be run at boot

	Launched Domain

	a domain, aside from the boot domain and recovery domain, that is started as
part of a multiple domain boot and remains running once the boot process is
complete

	Multiple Domain Boot

	a system configuration where the hypervisor and multiple virtual machines
are all launched when the host system hardware boots

	Recovery Domain

	an optional fallback domain that the hypervisor may start in the event of a
detectable error encountered during the multiple domain boot process

	System Device Tree

	this is the product of an Arm community project to extend Device Tree to
cover more aspects of initial system configuration

1.6.4 Appendix 4: Copyright License

This work is licensed under a Creative Commons Attribution 4.0 International
License. A copy of this license may be obtained from the Creative Commons
website (https://creativecommons.org/licenses/by/4.0/legalcode).

Contributions by:

Christopher Clark are Copyright © 2021 Star Lab Corporation

Daniel P. Smith are Copyright © 2021 Apertus Solutions, LLC

Kconfig Language

Introduction

The configuration database is a collection of configuration options
organized in a tree structure:

+- Code maturity level options
| +- Prompt for development and/or incomplete code/drivers
+- General setup
| +- Networking support
| +- System V IPC
| +- BSD Process Accounting
| +- Sysctl support
+- Loadable module support
| +- Enable loadable module support
| +- Set version information on all module symbols
| +- Kernel module loader
+- ...

Every entry has its own dependencies. These dependencies are used
to determine the visibility of an entry. Any child entry is only
visible if its parent entry is also visible.

Menu entries

Most entries define a config option; all other entries help to organize
them. A single configuration option is defined like this:

config MODVERSIONS
 bool "Set version information on all module symbols"
 depends on MODULES
 help
 Usually, modules have to be recompiled whenever you switch to a new
 kernel. ...

Every line starts with a key word and can be followed by multiple
arguments. “config” starts a new config entry. The following lines
define attributes for this config option. Attributes can be the type of
the config option, input prompt, dependencies, help text and default
values. A config option can be defined multiple times with the same
name, but every definition can have only a single input prompt and the
type must not conflict.

Menu attributes

A menu entry can have a number of attributes. Not all of them are
applicable everywhere (see syntax).

	type definition: “bool”/”tristate”/”string”/”hex”/”int”

Every config option must have a type. There are only two basic types:
tristate and string; the other types are based on these two. The type
definition optionally accepts an input prompt, so these two examples
are equivalent:

bool "Networking support"

and:

bool
prompt "Networking support"

	input prompt: “prompt” <prompt> [“if” <expr>]

Every menu entry can have at most one prompt, which is used to display
to the user. Optionally dependencies only for this prompt can be added
with “if”.

	default value: “default” <expr> [“if” <expr>]

A config option can have any number of default values. If multiple
default values are visible, only the first defined one is active.
Default values are not limited to the menu entry where they are
defined. This means the default can be defined somewhere else or be
overridden by an earlier definition.
The default value is only assigned to the config symbol if no other
value was set by the user (via the input prompt above). If an input
prompt is visible the default value is presented to the user and can
be overridden by him.
Optionally, dependencies only for this default value can be added with
“if”.

The default value deliberately defaults to ‘n’ in order to avoid bloating the
build. With few exceptions, new config options should not change this. The
intent is for “make oldconfig” to add as little as possible to the config from
release to release.

	Note:

	Things that merit “default y/m” include:

	A new Kconfig option for something that used to always be built
should be “default y”.

	A new gatekeeping Kconfig option that hides/shows other Kconfig
options (but does not generate any code of its own), should be
“default y” so people will see those other options.

	Sub-driver behavior or similar options for a driver that is
“default n”. This allows you to provide sane defaults.

	Hardware or infrastructure that everybody expects, such as CONFIG_NET
or CONFIG_BLOCK. These are rare exceptions.

	type definition + default value:

"def_bool"/"def_tristate" <expr> ["if" <expr>]

This is a shorthand notation for a type definition plus a value.
Optionally dependencies for this default value can be added with “if”.

	dependencies: “depends on” <expr>

This defines a dependency for this menu entry. If multiple
dependencies are defined, they are connected with ‘&&’. Dependencies
are applied to all other options within this menu entry (which also
accept an “if” expression), so these two examples are equivalent:

bool "foo" if BAR
default y if BAR

and:

depends on BAR
bool "foo"
default y

	reverse dependencies: “select” <symbol> [“if” <expr>]

While normal dependencies reduce the upper limit of a symbol (see
below), reverse dependencies can be used to force a lower limit of
another symbol. The value of the current menu symbol is used as the
minimal value <symbol> can be set to. If <symbol> is selected multiple
times, the limit is set to the largest selection.
Reverse dependencies can only be used with boolean or tristate
symbols.

	Note:

	select should be used with care. select will force
a symbol to a value without visiting the dependencies.
By abusing select you are able to select a symbol FOO even
if FOO depends on BAR that is not set.
In general use select only for non-visible symbols
(no prompts anywhere) and for symbols with no dependencies.
That will limit the usefulness but on the other hand avoid
the illegal configurations all over.

	weak reverse dependencies: “imply” <symbol> [“if” <expr>]

This is similar to “select” as it enforces a lower limit on another
symbol except that the “implied” symbol’s value may still be set to n
from a direct dependency or with a visible prompt.

Given the following example:

config FOO
 tristate
 imply BAZ

config BAZ
 tristate
 depends on BAR

The following values are possible:

	FOO

	BAR

	BAZ’s default

	choice for BAZ

	n

	y

	n

	N/m/y

	m

	y

	m

	M/y/n

	y

	y

	y

	Y/n

	y

	n

	
	

	N

This is useful e.g. with multiple drivers that want to indicate their
ability to hook into a secondary subsystem while allowing the user to
configure that subsystem out without also having to unset these drivers.

	limiting menu display: “visible if” <expr>

This attribute is only applicable to menu blocks, if the condition is
false, the menu block is not displayed to the user (the symbols
contained there can still be selected by other symbols, though). It is
similar to a conditional “prompt” attribute for individual menu
entries. Default value of “visible” is true.

	numerical ranges: “range” <symbol> <symbol> [“if” <expr>]

This allows to limit the range of possible input values for int
and hex symbols. The user can only input a value which is larger than
or equal to the first symbol and smaller than or equal to the second
symbol.

	help text: “help” or “—help—”

This defines a help text. The end of the help text is determined by
the indentation level, this means it ends at the first line which has
a smaller indentation than the first line of the help text.
“—help—” and “help” do not differ in behaviour, “—help—” is
used to help visually separate configuration logic from help within
the file as an aid to developers.

	misc options: “option” <symbol>[=<value>]

Various less common options can be defined via this option syntax,
which can modify the behaviour of the menu entry and its config
symbol. These options are currently possible:

	“defconfig_list”
This declares a list of default entries which can be used when
looking for the default configuration (which is used when the main
.config doesn’t exists yet.)

	“modules”
This declares the symbol to be used as the MODULES symbol, which
enables the third modular state for all config symbols.
At most one symbol may have the “modules” option set.

	“allnoconfig_y”
This declares the symbol as one that should have the value y when
using “allnoconfig”. Used for symbols that hide other symbols.

Menu dependencies

Dependencies define the visibility of a menu entry and can also reduce
the input range of tristate symbols. The tristate logic used in the
expressions uses one more state than normal boolean logic to express the
module state. Dependency expressions have the following syntax:

<expr> ::= <symbol> (1)
 <symbol> '=' <symbol> (2)
 <symbol> '!=' <symbol> (3)
 <symbol1> '<' <symbol2> (4)
 <symbol1> '>' <symbol2> (4)
 <symbol1> '<=' <symbol2> (4)
 <symbol1> '>=' <symbol2> (4)
 '(' <expr> ')' (5)
 '!' <expr> (6)
 <expr> '&&' <expr> (7)
 <expr> '||' <expr> (8)

Expressions are listed in decreasing order of precedence.

	Convert the symbol into an expression. Boolean and tristate symbols
are simply converted into the respective expression values. All
other symbol types result in ‘n’.

	If the values of both symbols are equal, it returns ‘y’,
otherwise ‘n’.

	If the values of both symbols are equal, it returns ‘n’,
otherwise ‘y’.

	If value of <symbol1> is respectively lower, greater, lower-or-equal,
or greater-or-equal than value of <symbol2>, it returns ‘y’,
otherwise ‘n’.

	Returns the value of the expression. Used to override precedence.

	Returns the result of (2-/expr/).

	Returns the result of min(/expr/, /expr/).

	Returns the result of max(/expr/, /expr/).

An expression can have a value of ‘n’, ‘m’ or ‘y’ (or 0, 1, 2
respectively for calculations). A menu entry becomes visible when its
expression evaluates to ‘m’ or ‘y’.

There are two types of symbols: constant and non-constant symbols.
Non-constant symbols are the most common ones and are defined with the
‘config’ statement. Non-constant symbols consist entirely of alphanumeric
characters or underscores.
Constant symbols are only part of expressions. Constant symbols are
always surrounded by single or double quotes. Within the quote, any
other character is allowed and the quotes can be escaped using ‘’.

Menu structure

The position of a menu entry in the tree is determined in two ways. First
it can be specified explicitly:

menu "Network device support"
 depends on NET

config NETDEVICES
 ...

endmenu

All entries within the “menu” … “endmenu” block become a submenu of
“Network device support”. All subentries inherit the dependencies from
the menu entry, e.g. this means the dependency “NET” is added to the
dependency list of the config option NETDEVICES.

The other way to generate the menu structure is done by analyzing the
dependencies. If a menu entry somehow depends on the previous entry, it
can be made a submenu of it. First, the previous (parent) symbol must
be part of the dependency list and then one of these two conditions
must be true:

	the child entry must become invisible, if the parent is set to ‘n’

	the child entry must only be visible, if the parent is visible:

config MODULES
 bool "Enable loadable module support"

config MODVERSIONS
 bool "Set version information on all module symbols"
 depends on MODULES

comment "module support disabled"
 depends on !MODULES

MODVERSIONS directly depends on MODULES, this means it’s only visible if
MODULES is different from ‘n’. The comment on the other hand is only
visible when MODULES is set to ‘n’.

Kconfig syntax

The configuration file describes a series of menu entries, where every
line starts with a keyword (except help texts). The following keywords
end a menu entry:

	config

	menuconfig

	choice/endchoice

	comment

	menu/endmenu

	if/endif

	source

The first five also start the definition of a menu entry.

config:

"config" <symbol>
<config options>

This defines a config symbol <symbol> and accepts any of above
attributes as options.

menuconfig:

"menuconfig" <symbol>
<config options>

This is similar to the simple config entry above, but it also gives a
hint to front ends, that all suboptions should be displayed as a
separate list of options. To make sure all the suboptions will really
show up under the menuconfig entry and not outside of it, every item
from the <config options> list must depend on the menuconfig symbol.
In practice, this is achieved by using one of the next two constructs:

(1):
menuconfig M
if M
 config C1
 config C2
endif

(2):
menuconfig M
config C1
 depends on M
config C2
 depends on M

In the following examples (3) and (4), C1 and C2 still have the M
dependency, but will not appear under menuconfig M anymore, because
of C0, which doesn’t depend on M:

(3):
menuconfig M
 config C0
if M
 config C1
 config C2
endif

(4):
menuconfig M
config C0
config C1
 depends on M
config C2
 depends on M

choices:

"choice" [symbol]
<choice options>
<choice block>
"endchoice"

This defines a choice group and accepts any of the above attributes as
options. A choice can only be of type bool or tristate. If no type is
specified for a choice, its type will be determined by the type of
the first choice element in the group or remain unknown if none of the
choice elements have a type specified, as well.

While a boolean choice only allows a single config entry to be
selected, a tristate choice also allows any number of config entries
to be set to ‘m’. This can be used if multiple drivers for a single
hardware exists and only a single driver can be compiled/loaded into
the kernel, but all drivers can be compiled as modules.

A choice accepts another option “optional”, which allows to set the
choice to ‘n’ and no entry needs to be selected.
If no [symbol] is associated with a choice, then you can not have multiple
definitions of that choice. If a [symbol] is associated to the choice,
then you may define the same choice (i.e. with the same entries) in another
place.

comment:

"comment" <prompt>
<comment options>

This defines a comment which is displayed to the user during the
configuration process and is also echoed to the output files. The only
possible options are dependencies.

menu:

"menu" <prompt>
<menu options>
<menu block>
"endmenu"

This defines a menu block, see “Menu structure” above for more
information. The only possible options are dependencies and “visible”
attributes.

if:

"if" <expr>
<if block>
"endif"

This defines an if block. The dependency expression <expr> is appended
to all enclosed menu entries.

source:

"source" <prompt>

This reads the specified configuration file. This file is always parsed.

mainmenu:

"mainmenu" <prompt>

This sets the config program’s title bar if the config program chooses
to use it. It should be placed at the top of the configuration, before any
other statement.

‘#’ Kconfig source file comment:

An unquoted ‘#’ character anywhere in a source file line indicates
the beginning of a source file comment. The remainder of that line
is a comment.

Kconfig hints

This is a collection of Kconfig tips, most of which aren’t obvious at
first glance and most of which have become idioms in several Kconfig
files.

Adding common features and make the usage configurable

It is a common idiom to implement a feature/functionality that are
relevant for some architectures but not all.
The recommended way to do so is to use a config variable named HAVE_*
that is defined in a common Kconfig file and selected by the relevant
architectures.
An example is the generic IOMAP functionality.

We would in lib/Kconfig see:

Generic IOMAP is used to ...
config HAVE_GENERIC_IOMAP

config GENERIC_IOMAP
 depends on HAVE_GENERIC_IOMAP && FOO

And in lib/Makefile we would see:

obj-$(CONFIG_GENERIC_IOMAP) += iomap.o

For each architecture using the generic IOMAP functionality we would see:

config X86
 select ...
 select HAVE_GENERIC_IOMAP
 select ...

Note: we use the existing config option and avoid creating a new
config variable to select HAVE_GENERIC_IOMAP.

Note: the use of the internal config variable HAVE_GENERIC_IOMAP, it is
introduced to overcome the limitation of select which will force a
config option to ‘y’ no matter the dependencies.
The dependencies are moved to the symbol GENERIC_IOMAP and we avoid the
situation where select forces a symbol equals to ‘y’.

Adding features that need compiler support

There are several features that need compiler support. The recommended way
to describe the dependency on the compiler feature is to use “depends on”
followed by a test macro:

config STACKPROTECTOR
 bool "Stack Protector buffer overflow detection"
 depends on $(cc-option,-fstack-protector)
 ...

If you need to expose a compiler capability to makefiles and/or C source files,
CC_HAS_ is the recommended prefix for the config option:

config CC_HAS_STACKPROTECTOR_NONE
 def_bool $(cc-option,-fno-stack-protector)

Build as module only

To restrict a component build to module-only, qualify its config symbol
with “depends on m”. E.g.:

config FOO
 depends on BAR && m

limits FOO to module (=m) or disabled (=n).

Kconfig recursive dependency limitations

If you’ve hit the Kconfig error: “recursive dependency detected” you’ve run
into a recursive dependency issue with Kconfig, a recursive dependency can be
summarized as a circular dependency. The kconfig tools need to ensure that
Kconfig files comply with specified configuration requirements. In order to do
that kconfig must determine the values that are possible for all Kconfig
symbols, this is currently not possible if there is a circular relation
between two or more Kconfig symbols. For more details refer to the “Simple
Kconfig recursive issue” subsection below. Kconfig does not do recursive
dependency resolution; this has a few implications for Kconfig file writers.
We’ll first explain why this issues exists and then provide an example
technical limitation which this brings upon Kconfig developers. Eager
developers wishing to try to address this limitation should read the next
subsections.

Simple Kconfig recursive issue

Read: Documentation/kbuild/Kconfig.recursion-issue-01

Test with:

make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-01 allnoconfig

Cumulative Kconfig recursive issue

Read: Documentation/kbuild/Kconfig.recursion-issue-02

Test with:

make KBUILD_KCONFIG=Documentation/kbuild/Kconfig.recursion-issue-02 allnoconfig

Practical solutions to kconfig recursive issue

Developers who run into the recursive Kconfig issue have two options
at their disposal. We document them below and also provide a list of
historical issues resolved through these different solutions.

	Remove any superfluous “select FOO” or “depends on FOO”

	Match dependency semantics:

b1) Swap all “select FOO” to “depends on FOO” or,

b2) Swap all “depends on FOO” to “select FOO”

The resolution to a) can be tested with the sample Kconfig file
Documentation/kbuild/Kconfig.recursion-issue-01 through the removal
of the “select CORE” from CORE_BELL_A_ADVANCED as that is implicit already
since CORE_BELL_A depends on CORE. At times it may not be possible to remove
some dependency criteria, for such cases you can work with solution b).

The two different resolutions for b) can be tested in the sample Kconfig file
Documentation/kbuild/Kconfig.recursion-issue-02.

Below is a list of examples of prior fixes for these types of recursive issues;
all errors appear to involve one or more select’s and one or more “depends on”.

	commit

	fix

	06b718c01208

	select A -> depends on A

	c22eacfe82f9

	depends on A -> depends on B

	6a91e854442c

	select A -> depends on A

	118c565a8f2e

	select A -> select B

	f004e5594705

	select A -> depends on A

	c7861f37b4c6

	depends on A -> (null)

	80c69915e5fb

	select A -> (null) (1)

	c2218e26c0d0

	select A -> depends on A (1)

	d6ae99d04e1c

	select A -> depends on A

	95ca19cf8cbf

	select A -> depends on A

	8f057d7bca54

	depends on A -> (null)

	8f057d7bca54

	depends on A -> select A

	a0701f04846e

	select A -> depends on A

	0c8b92f7f259

	depends on A -> (null)

	e4e9e0540928

	select A -> depends on A (2)

	7453ea886e87

	depends on A > (null) (1)

	7b1fff7e4fdf

	select A -> depends on A

	86c747d2a4f0

	select A -> depends on A

	d9f9ab51e55e

	select A -> depends on A

	0c51a4d8abd6

	depends on A -> select A (3)

	e98062ed6dc4

	select A -> depends on A (3)

	91e5d284a7f1

	select A -> (null)

	Partial (or no) quote of error.

	That seems to be the gist of that fix.

	Same error.

Future kconfig work

Work on kconfig is welcomed on both areas of clarifying semantics and on
evaluating the use of a full SAT solver for it. A full SAT solver can be
desirable to enable more complex dependency mappings and / or queries,
for instance on possible use case for a SAT solver could be that of handling
the current known recursive dependency issues. It is not known if this would
address such issues but such evaluation is desirable. If support for a full SAT
solver proves too complex or that it cannot address recursive dependency issues
Kconfig should have at least clear and well defined semantics which also
addresses and documents limitations or requirements such as the ones dealing
with recursive dependencies.

Further work on both of these areas is welcomed on Kconfig. We elaborate
on both of these in the next two subsections.

Semantics of Kconfig

The use of Kconfig is broad, Linux is now only one of Kconfig’s users:
one study has completed a broad analysis of Kconfig use in 12 projects 0.
Despite its widespread use, and although this document does a reasonable job
in documenting basic Kconfig syntax a more precise definition of Kconfig
semantics is welcomed. One project deduced Kconfig semantics through
the use of the xconfig configurator 1. Work should be done to confirm if
the deduced semantics matches our intended Kconfig design goals.

Having well defined semantics can be useful for tools for practical
evaluation of depenencies, for instance one such use known case was work to
express in boolean abstraction of the inferred semantics of Kconfig to
translate Kconfig logic into boolean formulas and run a SAT solver on this to
find dead code / features (always inactive), 114 dead features were found in
Linux using this methodology 1 (Section 8: Threats to validity).

Confirming this could prove useful as Kconfig stands as one of the the leading
industrial variability modeling languages 1 2. Its study would help
evaluate practical uses of such languages, their use was only theoretical
and real world requirements were not well understood. As it stands though
only reverse engineering techniques have been used to deduce semantics from
variability modeling languages such as Kconfig 3.

	0

	http://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf

	1(1,2,3)

	http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf

	2

	http://gsd.uwaterloo.ca/sites/default/files/ase241-berger_0.pdf

	3

	http://gsd.uwaterloo.ca/sites/default/files/icse2011.pdf

Full SAT solver for Kconfig

Although SAT solvers 4 haven’t yet been used by Kconfig directly, as noted
in the previous subsection, work has been done however to express in boolean
abstraction the inferred semantics of Kconfig to translate Kconfig logic into
boolean formulas and run a SAT solver on it 5. Another known related project
is CADOS 6 (former VAMOS 7) and the tools, mainly undertaker 8, which
has been introduced first with 9. The basic concept of undertaker is to
exract variability models from Kconfig, and put them together with a
propositional formula extracted from CPP #ifdefs and build-rules into a SAT
solver in order to find dead code, dead files, and dead symbols. If using a SAT
solver is desirable on Kconfig one approach would be to evaluate repurposing
such efforts somehow on Kconfig. There is enough interest from mentors of
existing projects to not only help advise how to integrate this work upstream
but also help maintain it long term. Interested developers should visit:

http://kernelnewbies.org/KernelProjects/kconfig-sat

	4

	http://www.cs.cornell.edu/~sabhar/chapters/SATSolvers-KR-Handbook.pdf

	5

	http://gsd.uwaterloo.ca/sites/default/files/vm-2013-berger.pdf

	6

	https://cados.cs.fau.de

	7

	https://vamos.cs.fau.de

	8

	https://undertaker.cs.fau.de

	9

	https://www4.cs.fau.de/Publications/2011/tartler_11_eurosys.pdf

Kconfig macro language

Concept

The basic idea was inspired by Make. When we look at Make, we notice sort of
two languages in one. One language describes dependency graphs consisting of
targets and prerequisites. The other is a macro language for performing textual
substitution.

There is clear distinction between the two language stages. For example, you
can write a makefile like follows:

APP := foo
SRC := foo.c
CC := gcc

$(APP): $(SRC)
 $(CC) -o $(APP) $(SRC)

The macro language replaces the variable references with their expanded form,
and handles as if the source file were input like follows:

foo: foo.c
 gcc -o foo foo.c

Then, Make analyzes the dependency graph and determines the targets to be
updated.

The idea is quite similar in Kconfig - it is possible to describe a Kconfig
file like this:

CC := gcc

config CC_HAS_FOO
 def_bool $(shell, $(srctree)/scripts/gcc-check-foo.sh $(CC))

The macro language in Kconfig processes the source file into the following
intermediate:

config CC_HAS_FOO
 def_bool y

Then, Kconfig moves onto the evaluation stage to resolve inter-symbol
dependency as explained in kconfig-language.txt.

Variables

Like in Make, a variable in Kconfig works as a macro variable. A macro
variable is expanded “in place” to yield a text string that may then be
expanded further. To get the value of a variable, enclose the variable name in
$(). The parentheses are required even for single-letter variable names; $X is
a syntax error. The curly brace form as in ${CC} is not supported either.

There are two types of variables: simply expanded variables and recursively
expanded variables.

A simply expanded variable is defined using the := assignment operator. Its
righthand side is expanded immediately upon reading the line from the Kconfig
file.

A recursively expanded variable is defined using the = assignment operator.
Its righthand side is simply stored as the value of the variable without
expanding it in any way. Instead, the expansion is performed when the variable
is used.

There is another type of assignment operator; += is used to append text to a
variable. The righthand side of += is expanded immediately if the lefthand
side was originally defined as a simple variable. Otherwise, its evaluation is
deferred.

The variable reference can take parameters, in the following form:

$(name,arg1,arg2,arg3)

You can consider the parameterized reference as a function. (more precisely,
“user-defined function” in contrast to “built-in function” listed below).

Useful functions must be expanded when they are used since the same function is
expanded differently if different parameters are passed. Hence, a user-defined
function is defined using the = assignment operator. The parameters are
referenced within the body definition with $(1), $(2), etc.

In fact, recursively expanded variables and user-defined functions are the same
internally. (In other words, “variable” is “function with zero argument”.)
When we say “variable” in a broad sense, it includes “user-defined function”.

Built-in functions

Like Make, Kconfig provides several built-in functions. Every function takes a
particular number of arguments.

In Make, every built-in function takes at least one argument. Kconfig allows
zero argument for built-in functions, such as $(fileno), $(lineno). You could
consider those as “built-in variable”, but it is just a matter of how we call
it after all. Let’s say “built-in function” here to refer to natively supported
functionality.

Kconfig currently supports the following built-in functions.

	$(shell,command)

The “shell” function accepts a single argument that is expanded and passed
to a subshell for execution. The standard output of the command is then read
and returned as the value of the function. Every newline in the output is
replaced with a space. Any trailing newlines are deleted. The standard error
is not returned, nor is any program exit status.

	$(info,text)

The “info” function takes a single argument and prints it to stdout.
It evaluates to an empty string.

	$(warning-if,condition,text)

The “warning-if” function takes two arguments. If the condition part is “y”,
the text part is sent to stderr. The text is prefixed with the name of the
current Kconfig file and the current line number.

	$(error-if,condition,text)

The “error-if” function is similar to “warning-if”, but it terminates the
parsing immediately if the condition part is “y”.

	$(filename)

The ‘filename’ takes no argument, and $(filename) is expanded to the file
name being parsed.

	$(lineno)

The ‘lineno’ takes no argument, and $(lineno) is expanded to the line number
being parsed.

Make vs Kconfig

Kconfig adopts Make-like macro language, but the function call syntax is
slightly different.

A function call in Make looks like this:

$(func-name arg1,arg2,arg3)

The function name and the first argument are separated by at least one
whitespace. Then, leading whitespaces are trimmed from the first argument,
while whitespaces in the other arguments are kept. You need to use a kind of
trick to start the first parameter with spaces. For example, if you want
to make “info” function print ” hello”, you can write like follows:

empty :=
space := $(empty) $(empty)
$(info $(space)$(space)hello)

Kconfig uses only commas for delimiters, and keeps all whitespaces in the
function call. Some people prefer putting a space after each comma delimiter:

$(func-name, arg1, arg2, arg3)

In this case, “func-name” will receive ” arg1”, ” arg2”, ” arg3”. The presence
of leading spaces may matter depending on the function. The same applies to
Make - for example, $(subst .c, .o, $(sources)) is a typical mistake; it
replaces “.c” with ” .o”.

In Make, a user-defined function is referenced by using a built-in function,
‘call’, like this:

$(call my-func,arg1,arg2,arg3)

Kconfig invokes user-defined functions and built-in functions in the same way.
The omission of ‘call’ makes the syntax shorter.

In Make, some functions treat commas verbatim instead of argument separators.
For example, $(shell echo hello, world) runs the command “echo hello, world”.
Likewise, $(info hello, world) prints “hello, world” to stdout. You could say
this is _useful_ inconsistency.

In Kconfig, for simpler implementation and grammatical consistency, commas that
appear in the $() context are always delimiters. It means:

$(shell, echo hello, world)

is an error because it is passing two parameters where the ‘shell’ function
accepts only one. To pass commas in arguments, you can use the following trick:

comma := ,
$(shell, echo hello$(comma) world)

Caveats

A variable (or function) cannot be expanded across tokens. So, you cannot use
a variable as a shorthand for an expression that consists of multiple tokens.
The following works:

RANGE_MIN := 1
RANGE_MAX := 3

config FOO
 int "foo"
 range $(RANGE_MIN) $(RANGE_MAX)

But, the following does not work:

RANGES := 1 3

config FOO
 int "foo"
 range $(RANGES)

A variable cannot be expanded to any keyword in Kconfig. The following does
not work:

MY_TYPE := tristate

config FOO
 $(MY_TYPE) "foo"
 default y

Obviously from the design, $(shell command) is expanded in the textual
substitution phase. You cannot pass symbols to the ‘shell’ function.

The following does not work as expected:

config ENDIAN_FLAG
 string
 default "-mbig-endian" if CPU_BIG_ENDIAN
 default "-mlittle-endian" if CPU_LITTLE_ENDIAN

config CC_HAS_ENDIAN_FLAG
 def_bool $(shell $(srctree)/scripts/gcc-check-flag ENDIAN_FLAG)

Instead, you can do like follows so that any function call is statically
expanded:

config CC_HAS_ENDIAN_FLAG
 bool
 default $(shell $(srctree)/scripts/gcc-check-flag -mbig-endian) if CPU_BIG_ENDIAN
 default $(shell $(srctree)/scripts/gcc-check-flag -mlittle-endian) if CPU_LITTLE_ENDIAN

Kconfig make config

This file contains some assistance for using make *config.

Use “make help” to list all of the possible configuration targets.

The xconfig (‘qconf’), menuconfig (‘mconf’), and nconfig (‘nconf’)
programs also have embedded help text. Be sure to check that for
navigation, search, and other general help text.

General

New kernel releases often introduce new config symbols. Often more
important, new kernel releases may rename config symbols. When
this happens, using a previously working .config file and running
“make oldconfig” won’t necessarily produce a working new kernel
for you, so you may find that you need to see what NEW kernel
symbols have been introduced.

To see a list of new config symbols, use:

cp user/some/old.config .config
make listnewconfig

and the config program will list any new symbols, one per line.

Alternatively, you can use the brute force method:

make oldconfig
scripts/diffconfig .config.old .config | less

Environment variables for *config

KCONFIG_CONFIG

This environment variable can be used to specify a default kernel config
file name to override the default name of “.config”.

KCONFIG_OVERWRITECONFIG

If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not
break symlinks when .config is a symlink to somewhere else.

CONFIG_

If you set CONFIG_ in the environment, Kconfig will prefix all symbols
with its value when saving the configuration, instead of using the default,
CONFIG_.

Environment variables for ‘{allyes/allmod/allno/rand}config’

KCONFIG_ALLCONFIG

(partially based on lkml email from/by Rob Landley, re: miniconfig)

The allyesconfig/allmodconfig/allnoconfig/randconfig variants can also
use the environment variable KCONFIG_ALLCONFIG as a flag or a filename
that contains config symbols that the user requires to be set to a
specific value. If KCONFIG_ALLCONFIG is used without a filename where
KCONFIG_ALLCONFIG == “” or KCONFIG_ALLCONFIG == “1”, make *config
checks for a file named “all{yes/mod/no/def/random}.config”
(corresponding to the *config command that was used) for symbol values
that are to be forced. If this file is not found, it checks for a
file named “all.config” to contain forced values.

This enables you to create “miniature” config (miniconfig) or custom
config files containing just the config symbols that you are interested
in. Then the kernel config system generates the full .config file,
including symbols of your miniconfig file.

This ‘KCONFIG_ALLCONFIG’ file is a config file which contains
(usually a subset of all) preset config symbols. These variable
settings are still subject to normal dependency checks.

Examples:

KCONFIG_ALLCONFIG=custom-notebook.config make allnoconfig

or:

KCONFIG_ALLCONFIG=mini.config make allnoconfig

or:

make KCONFIG_ALLCONFIG=mini.config allnoconfig

These examples will disable most options (allnoconfig) but enable or
disable the options that are explicitly listed in the specified
mini-config files.

Environment variables for ‘randconfig’

KCONFIG_SEED

You can set this to the integer value used to seed the RNG, if you want
to somehow debug the behaviour of the kconfig parser/frontends.
If not set, the current time will be used.

KCONFIG_PROBABILITY

This variable can be used to skew the probabilities. This variable can
be unset or empty, or set to three different formats:

	KCONFIG_PROBABILITY

	y:n split

	y:m:n split

	unset or empty

	50 : 50

	33 : 33 : 34

	N

	N : 100-N

	N/2 : N/2 : 100-N

	[1] N:M

	N+M : 100-(N+M)

	N : M : 100-(N+M)

	[2] N:M:L

	N : 100-N

	M : L : 100-(M+L)

where N, M and L are integers (in base 10) in the range [0,100], and so
that:

[1] N+M is in the range [0,100]

[2] M+L is in the range [0,100]

Examples:

KCONFIG_PROBABILITY=10
 10% of booleans will be set to 'y', 90% to 'n'
 5% of tristates will be set to 'y', 5% to 'm', 90% to 'n'
KCONFIG_PROBABILITY=15:25
 40% of booleans will be set to 'y', 60% to 'n'
 15% of tristates will be set to 'y', 25% to 'm', 60% to 'n'
KCONFIG_PROBABILITY=10:15:15
 10% of booleans will be set to 'y', 90% to 'n'
 15% of tristates will be set to 'y', 15% to 'm', 70% to 'n'

Environment variables for ‘syncconfig’

KCONFIG_NOSILENTUPDATE

If this variable has a non-blank value, it prevents silent kernel
config updates (requires explicit updates).

KCONFIG_AUTOCONFIG

This environment variable can be set to specify the path & name of the
“auto.conf” file. Its default value is “include/config/auto.conf”.

KCONFIG_TRISTATE

This environment variable can be set to specify the path & name of the
“tristate.conf” file. Its default value is “include/config/tristate.conf”.

KCONFIG_AUTOHEADER

This environment variable can be set to specify the path & name of the
“autoconf.h” (header) file.
Its default value is “include/generated/autoconf.h”.

menuconfig

SEARCHING for CONFIG symbols

Searching in menuconfig:

The Search function searches for kernel configuration symbol
names, so you have to know something close to what you are
looking for.

Example:

/hotplug
This lists all config symbols that contain "hotplug",
e.g., HOTPLUG_CPU, MEMORY_HOTPLUG.

For search help, enter / followed by TAB-TAB (to highlight
<Help>) and Enter. This will tell you that you can also use
regular expressions (regexes) in the search string, so if you
are not interested in MEMORY_HOTPLUG, you could try:

/^hotplug

When searching, symbols are sorted thus:

	first, exact matches, sorted alphabetically (an exact match
is when the search matches the complete symbol name);

	then, other matches, sorted alphabetically.

For example: ^ATH.K matches:

ATH5K ATH9K ATH5K_AHB ATH5K_DEBUG […] ATH6KL ATH6KL_DEBUG
[…] ATH9K_AHB ATH9K_BTCOEX_SUPPORT ATH9K_COMMON […]

of which only ATH5K and ATH9K match exactly and so are sorted
first (and in alphabetical order), then come all other symbols,
sorted in alphabetical order.

User interface options for ‘menuconfig’

MENUCONFIG_COLOR

It is possible to select different color themes using the variable
MENUCONFIG_COLOR. To select a theme use:

make MENUCONFIG_COLOR=<theme> menuconfig

Available themes are:

- mono => selects colors suitable for monochrome displays
- blackbg => selects a color scheme with black background
- classic => theme with blue background. The classic look
- bluetitle => a LCD friendly version of classic. (default)

MENUCONFIG_MODE

This mode shows all sub-menus in one large tree.

Example:

make MENUCONFIG_MODE=single_menu menuconfig

nconfig

nconfig is an alternate text-based configurator. It lists function
keys across the bottom of the terminal (window) that execute commands.
You can also just use the corresponding numeric key to execute the
commands unless you are in a data entry window. E.g., instead of F6
for Save, you can just press 6.

Use F1 for Global help or F3 for the Short help menu.

Searching in nconfig:

You can search either in the menu entry “prompt” strings
or in the configuration symbols.

Use / to begin a search through the menu entries. This does
not support regular expressions. Use <Down> or <Up> for
Next hit and Previous hit, respectively. Use <Esc> to
terminate the search mode.

F8 (SymSearch) searches the configuration symbols for the
given string or regular expression (regex).

NCONFIG_MODE

This mode shows all sub-menus in one large tree.

Example:

make NCONFIG_MODE=single_menu nconfig

xconfig

Searching in xconfig:

The Search function searches for kernel configuration symbol
names, so you have to know something close to what you are
looking for.

Example:

Ctrl-F hotplug

or:

Menu: File, Search, hotplug

lists all config symbol entries that contain “hotplug” in
the symbol name. In this Search dialog, you may change the
config setting for any of the entries that are not grayed out.
You can also enter a different search string without having
to return to the main menu.

gconfig

Searching in gconfig:

There is no search command in gconfig. However, gconfig does
have several different viewing choices, modes, and options.

Xen Makefiles

Documentation for the build system of Xen, found in xen.git/xen/.

Makefile files

Description of the syntax that can be used in most Makefiles named
‘Makefile’. (‘xen/Makefile’ isn’t part of the description.)

‘Makefile’s are consumed by ‘Rules.mk’ when building.

Goal definitions

Goal definitions are the main part (heart) of the Makefile.
These lines define the files to be built, any special compilation
options, and any subdirectories to be entered recursively.

The most simple makefile contains one line:

Example:

obj-y += foo.o

This tells the build system that there is one object in that
directory, named foo.o. foo.o will be built from foo.c or foo.S.

The following pattern is often used to have object selected
depending on the configuration:

Example:

obj-$(CONFIG_FOO) += foo.o

$(CONFIG_FOO) can evaluates to y.
If CONFIG_FOO is not y, then the file will not be compiled nor linked.

Descending down in directories

A Makefile is only responsible for building objects in its own
directory. Files in subdirectories should be taken care of by
Makefiles in these subdirs. The build system will automatically
invoke make recursively in subdirectories, provided you let it know of
them.

To do so, obj-y is used.
acpi lives in a separate directory, and the Makefile present in
drivers/ tells the build system to descend down using the following
assignment.

Example:

#drivers/Makefile
obj-$(CONFIG_ACPI) += acpi/

If CONFIG_ACPI is set to ‘y’
the corresponding obj- variable will be set, and the build system
will descend down in the apci directory.
The build system only uses this information to decide that it needs
to visit the directory, it is the Makefile in the subdirectory that
specifies what is modular and what is built-in.

It is good practice to use a CONFIG_ variable when assigning directory
names. This allows the build system to totally skip the directory if the
corresponding CONFIG_ option is not set to ‘y’.

Compilation flags

	CFLAGS-y and AFLAGS-y

	These two flags apply only to the makefile in which they
are assigned. They are used for all the normal cc, as and ld
invocations happening during a recursive build.

$(CFLAGS-y) is necessary because the top Makefile owns the
variable $(XEN_CFLAGS) and uses it for compilation flags for the
entire tree. And the variable $(CFLAGS) is modified by Config.mk
which evaluated in every subdirs.

CFLAGS-y specifies options for compiling with $(CC).
AFLAGS-y specifies assembler options.

Build system infrastructure

This chapter describe some of the macro used when building Xen.

Macros

	if_changed

	if_changed is the infrastructure used for the following commands.

Usage:

target: source(s) FORCE
 $(call if_changed,ld/objcopy/...)

When the rule is evaluated, it is checked to see if any files
need an update, or the command line has changed since the last
invocation. The latter will force a rebuild if any options
to the executable have changed.
Any target that utilises if_changed must be listed in $(targets),
otherwise the command line check will fail, and the target will
always be built.
if_changed may be used in conjunction with custom commands as
defined in “Custom commands”.

Note: It is a typical mistake to forget the FORCE prerequisite.
Another common pitfall is that whitespace is sometimes
significant; for instance, the below will fail (note the extra space
after the comma):

target: source(s) FORCE

WRONG! $(call if_changed, ld/objcopy/…)

	Note:

	if_changed should not be used more than once per target.
It stores the executed command in a corresponding .cmd file
and multiple calls would result in overwrites and unwanted
results when the target is up to date and only the tests on
changed commands trigger execution of commands.

	ld

	Link target.

Example:

targets += setup setup.o bootsect bootsect.o
$(obj)/setup $(obj)/bootsect: %: %.o FORCE
 $(call if_changed,ld)

$(targets) are assigned all potential targets, by which the build
system knows the targets and will:

	check for commandline changes

The “: %: %.o” part of the prerequisite is a shorthand that
frees us from listing the setup.o and bootsect.o files.

	Note:

	It is a common mistake to forget the “targets :=” assignment,
resulting in the target file being recompiled for no
obvious reason.

	objcopy

	Copy binary. Uses OBJCOPYFLAGS usually specified in
arch/$(ARCH)/Makefile.

Custom commands

When the build system is executing with V=0, then only
a shorthand of a command is normally displayed.
To enable this behaviour for custom commands, two variables are
required to be set:

quiet_cmd_<command> - what shall be echoed
 cmd_<command> - the command to execute

Example:

xsm/flask/Makefile
mkflask := policy/mkflask.sh
quiet_cmd_mkflask = MKFLASK $@
cmd_mkflask = $(CONFIG_SHELL) $(mkflask) $(AWK) include \
 $(FLASK_H_DEPEND)

include/flask.h: $(FLASK_H_DEPEND) $(mkflask) FORCE
 $(call if_changed,mkflask)

When updating the include/flask.h target, the line:

MKFLASK include/flask.h

will be displayed with “make V=0”. (V=0 is the default)

C Dialect and Translation Assumptions for Xen

This document specifies the C language dialect used by Xen and
the assumptions Xen makes on the translation toolchain.
It covers, in particular:

	the used language extensions;

	the translation limits that the translation toolchains must be able
to accommodate;

	the implementation-defined behaviors upon which Xen may depend.

All points are of course relevant for portability. In addition,
programming in C is impossible without a detailed knowledge of the
implementation-defined behaviors. For this reason, it is recommended
that Xen developers have familiarity with this document and the
documentation referenced therein.

This document needs maintenance and adaptation in the following
circumstances:

	whenever the compiler is changed or updated;

	whenever the use of a certain language extension is added or removed;

	whenever code modifications cause exceeding the stated translation limits.

Applicable C Language Standard

Xen is written in C99 with extensions. The relevant ISO standard is

ISO/IEC 9899:1999/Cor 3:2007: Programming Languages - C,
Technical Corrigendum 3.
ISO/IEC, Geneva, Switzerland, 2007.

Reference Documentation

The following documents are referred to in the sequel:

	GCC_MANUAL:

	https://gcc.gnu.org/onlinedocs/gcc-12.1.0/gcc.pdf

	CPP_MANUAL:

	https://gcc.gnu.org/onlinedocs/gcc-12.1.0/cpp.pdf

	ARM64_ABI_MANUAL:

	https://github.com/ARM-software/abi-aa/blob/60a8eb8c55e999d74dac5e368fc9d7e36e38dda4/aapcs64/aapcs64.rst

	X86_64_ABI_MANUAL:

	https://gitlab.com/x86-psABIs/x86-64-ABI/-/jobs/artifacts/master/raw/x86-64-ABI/abi.pdf?job=build

C Language Extensions

The following table lists the extensions currently used in Xen.
The table columns are as follows:

	Extension

	a terse description of the extension;

	Architectures

	a set of Xen architectures making use of the extension;

	References

	when available, references to the documentation explaining
the syntax and semantics of (each instance of) the extension.

	Extension

	Architectures

	References

	Non-standard tokens

	ARM64, X86_64

	
	_Static_assert:

	see Section “2.1 C Language” of GCC_MANUAL.

	asm, __asm__:

	see Sections “6.48 Alternate Keywords” and “6.47 How to Use Inline Assembly Language in C Code” of GCC_MANUAL.

	__volatile__:

	see Sections “6.48 Alternate Keywords” and “6.47.2.1 Volatile” of GCC_MANUAL.

	__const__, __inline__, __inline:

	see Section “6.48 Alternate Keywords” of GCC_MANUAL.

	typeof, __typeof__:

	see Section “6.7 Referring to a Type with typeof” of GCC_MANUAL.

	__alignof__, __alignof:

	see Sections “6.48 Alternate Keywords” and “6.44 Determining the Alignment of Functions, Types or Variables” of GCC_MANUAL.

	__attribute__:

	see Section “6.39 Attribute Syntax” of GCC_MANUAL.

	__builtin_types_compatible_p:

	see Section “6.59 Other Built-in Functions Provided by GCC” of GCC_MANUAL.

	__builtin_va_arg:

	non-documented GCC extension.

	__builtin_offsetof:

	see Section “6.53 Support for offsetof” of GCC_MANUAL.

	Empty initialization list

	ARM64, X86_64

	Non-documented GCC extension.

	Arithmetic operator on pointer to void

	ARM64, X86_64

	See Section “6.24 Arithmetic on void- and Function-Pointers” of GCC_MANUAL.”

	Statements and declarations in expressions

	ARM64, X86_64

	See Section “6.1 Statements and Declarations in Expressions” of GCC_MANUAL.

	Structure or union definition with no members

	ARM64, X86_64

	See Section “6.19 Structures with No Members” of GCC_MANUAL.

	Zero size array type

	ARM64, X86_64

	See Section “6.18 Arrays of Length Zero” of GCC_MANUAL.

	Binary conditional expression

	ARM64, X86_64

	See Section “6.8 Conditionals with Omitted Operands” of GCC_MANUAL.

	‘Case’ label with upper/lower values

	ARM64, X86_64

	See Section “6.30 Case Ranges” of GCC_MANUAL.

	Unnamed field that is not a bit-field

	ARM64, X86_64

	See Section “6.63 Unnamed Structure and Union Fields” of GCC_MANUAL.

	Empty declaration

	ARM64, X86_64

	Non-documented GCC extension.
Note: an empty declaration is caused by a semicolon at file scope
with nothing before it (not to be confused with an empty statement).

	Incomplete enum declaration

	ARM64

	See Section “6.49 Incomplete enum Types” of GCC_MANUAL.

	Implicit conversion from a pointer to an incompatible pointer

	ARM64, X86_64

	Non-documented GCC extension. The documentation for option
-Wincompatible-pointer-types in Section
“3.8 Options to Request or Suppress Warnings” of GCC_MANUAL
is possibly relevant.

	Pointer to a function is converted to a pointer to an object or a pointer to an object is converted to a pointer to a function

	X86_64

	Non-documented GCC extension. The information provided in
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83584
is possibly relevant.

	Token pasting of ‘,’ and __VA_ARGS__

	ARM64, X86_64

	See Section “6.21 Macros with a Variable Number of Arguments” of GCC_MANUAL.

	Named variadic macro arguments

	ARM64, X86_64

	See Section “6.21 Macros with a Variable Number of Arguments” of GCC_MANUAL.

	No arguments for ‘…’ parameter of variadic macro

	ARM64, X86_64

	See Section “6.21 Macros with a Variable Number of Arguments” of GCC_MANUAL.

	void function returning void expression

	ARM64, X86_64

	See the documentation for -Wreturn-type in Section “3.8 Options to Request or Suppress Warnings” of GCC_MANUAL.

	GNU statement expressions from macro expansion

	ARM64, X86_64

	See Section “6.1 Statements and Declarations in Expressions” of GCC_MANUAL.

	Invalid application of sizeof to a void type

	ARM64, X86_64

	See Section “6.24 Arithmetic on void- and Function-Pointers” of GCC_MANUAL.

	Redeclaration of already-defined enum

	ARM64, X86_64

	See Section “6.49 Incomplete enum Types” of GCC_MANUAL.

	struct with flexible array member nested in a struct

	ARM64, X86_64

	See Section “6.18 Arrays of Length Zero” of GCC_MANUAL.

	struct with flexible array member used as an array element

	ARM64, X86_64

	See Section “6.18 Arrays of Length Zero” of GCC_MANUAL.

	enumerator value outside the range of int

	ARM64, X86_64

	Non-documented GCC extension.

	Extended integer types

	X86_64

	See Section “6.9 128-bit Integers” of GCC_MANUAL.

	Designated initializer for a range of elements

	ARM64, X86_64

	See Section “6.29 Designated Initializers” of GCC_MANUAL

Translation Limits

The following table lists the translation limits that a toolchain has
to satisfy in order to translate Xen. The numbers given are a
compromise: on the one hand, many modern compilers have very generous
limits (in several cases, the only limitation is the amount of
available memory); on the other hand we prefer setting limits that are
not too high, because compilers do not have any obligation of
diagnosing when a limit has been exceeded, and not too low, so as to
avoid frequently updating this document. In the table, only the
limits that go beyond the minima specified by the relevant C Standard
are listed.

The table columns are as follows:

	Limit

	a terse description of the translation limit;

	Architectures

	a set relevant of Xen architectures;

	Threshold

	a value that the Xen project does not wish to exceed for that limit
(this is typically below, often much below what the translation
toolchain supports);

	References

	when available, references to the documentation providing evidence
that the translation toolchain honors the threshold (and more).

	Limit

	Architectures

	Threshold

	References

	Size of an object

	ARM64, X86_64

	8388608

	The maximum size of an object is defined in the MAX_SIZE macro, and for a 32 bit architecture is 8MB.
The maximum size for an array is defined in the PTRDIFF_MAX and in a 32 bit architecture is 2^30-1.
See occurrences of these macros in GCC_MANUAL.

	Characters in one logical source line

	ARM64

	5000

	See Section “11.2 Implementation limits” of CPP_MANUAL.

	Characters in one logical source line

	X86_64

	12000

	See Section “11.2 Implementation limits” of CPP_MANUAL.

	Nesting levels for #include files

	ARM64

	24

	See Section “11.2 Implementation limits” of CPP_MANUAL.

	Nesting levels for #include files

	X86_64

	32

	See Section “11.2 Implementation limits” of CPP_MANUAL.

	case labels for a switch statement (excluding those for any nested switch statements)

	X86_64

	1500

	See Section “4.12 Statements” of GCC_MANUAL.

	Number of significant initial characters in an external identifier

	ARM64, X86_64

	63

	See Section “4.3 Identifiers” of GCC_MANUAL.

Implementation-Defined Behaviors

The following table lists the C language implementation-defined behaviors
relevant for MISRA C:2012 Dir 1.1 upon which Xen may possibly depend.

The table columns are as follows:

	I.-D.B.

	a terse description of the implementation-defined behavior;

	Architectures

	a set relevant of Xen architectures;

	Value(s)

	for i.-d.b.’s with values, the values allowed;

	References

	when available, references to the documentation providing details
about how the i.-d.b. is resolved by the translation toolchain.

	I.-D.B.

	Architectures

	Value(s)

	References

	Allowable bit-field types other than _Bool, signed int, and unsigned int

	ARM64, X86_64

	All explicitly signed integer types, all unsigned integer types,
and enumerations.

	See Section “4.9 Structures, Unions, Enumerations, and Bit-Fields”.

	#pragma preprocessing directive that is documented as causing translation failure or some other form of undefined behavior is encountered

	ARM64, X86_64

	pack, GCC visibility

	
	#pragma pack:

	see Section “6.62.11 Structure-Layout Pragmas” of GCC_MANUAL.

	#pragma GCC visibility:

	see Section “6.62.14 Visibility Pragmas” of GCC_MANUAL.

	The number of bits in a byte

	ARM64

	8

	See Section “4.4 Characters” of GCC_MANUAL and Section “8.1 Data types” of ARM64_ABI_MANUAL.

	The number of bits in a byte

	X86_64

	8

	See Section “4.4 Characters” of GCC_MANUAL and Section “3.1.2 Data Representation” of X86_64_ABI_MANUAL.

	Whether signed integer types are represented using sign and magnitude, two’s complement, or one’s complement, and whether the extraordinary value is a trap representation or an ordinary value

	ARM64, X86_64

	Two’s complement

	See Section “4.5 Integers” of GCC_MANUAL.

	Any extended integer types that exist in the implementation

	X86_64

	__uint128_t

	See Section “6.9 128-bit Integers” of GCC_MANUAL.

	The number, order, and encoding of bytes in any object

	ARM64

	
	See Section “4.15 Architecture” of GCC_MANUAL and Chapter 5 “Data types and alignment” of ARM64_ABI_MANUAL.

	The number, order, and encoding of bytes in any object

	X86_64

	
	See Section “4.15 Architecture” of GCC_MANUAL and Section “3.1.2 Data Representation” of X86_64_ABI_MANUAL.

	Whether a bit-field can straddle a storage-unit boundary

	ARM64

	
	See Section “4.9 Structures, Unions, Enumerations, and Bit-Fields of GCC_MANUAL and Section “8.1.8 Bit-fields” of ARM64_ABI_MANUAL.

	Whether a bit-field can straddle a storage-unit boundary

	X86_64

	
	See Section “4.9 Structures, Unions, Enumerations, and Bit-Fields” of GCC_MANUAL and Section “3.1.2 Data Representation” of X86_64_ABI_MANUAL.

	The order of allocation of bit-fields within a unit

	ARM64

	
	See Section “4.9 Structures, Unions, Enumerations, and Bit-Fields of GCC_MANUAL and Section “8.1.8 Bit-fields” of ARM64_ABI_MANUAL.

	The order of allocation of bit-fields within a unit

	X86_64

	
	See Section “4.9 Structures, Unions, Enumerations, and Bit-Fields” of GCC_MANUAL and Section “3.1.2 Data Representation” of X86_64_ABI_MANUAL.

	What constitutes an access to an object that has volatile-qualified type

	ARM64, X86_64

	
	See Section “4.10 Qualifiers” of GCC_MANUAL.

	The values or expressions assigned to the macros specified in the headers <float.h>, <limits.h>, and <stdint.h>

	ARM64

	
	See Section “4.15 Architecture” of GCC_MANUAL and Chapter 5 “Data types and alignment” of ARM64_ABI_MANUAL.

	The values or expressions assigned to the macros specified in the headers <float.h>, <limits.h>, and <stdint.h>

	X86_64

	
	See Section “4.15 Architecture” of GCC_MANUAL and Section “3.1.2 Data Representation” of X86_64_ABI_MANUAL.

	Character not in the basic source character set is encountered in a source file, except in an identifier, a character constant, a string literal, a header name, a comment, or a preprocessing token that is never converted to a token

	ARM64

	UTF-8

	See Section “1.1 Character sets” of CPP_MANUAL.
We assume the locale is not restricting any UTF-8 characters being part of the source character set.

	The value of a char object into which has been stored any character other than a member of the basic execution character set

	ARM64

	
	See Section “4.4 Characters” of GCC_MANUAL and Section “8.1 Data types” of ARM64_ABI_MANUAL.

	The value of a char object into which has been stored any character other than a member of the basic execution character set

	X86_64

	
	See Section “4.4 Characters” of GCC_MANUAL and Section “3.1.2 Data Representation” of X86_64_ABI_MANUAL.

	The value of an integer character constant containing more than one character or containing a character or escape sequence that does not map to a single-byte execution character

	ARM64

	
	See Section “4.4 Characters” of GCC_MANUAL and Section “8.1 Data types” of ARM64_ABI_MANUAL.

	The value of an integer character constant containing more than one character or containing a character or escape sequence that does not map to a single-byte execution character

	X86_64

	
	See Section “4.4 Characters” of GCC_MANUAL and Section “3.1.2 Data Representation” of X86_64_ABI_MANUAL.

	The mapping of members of the source character set

	ARM64, X86_64

	
	See Section “4.4 Characters” of GCC_MANUAL and the documentation for -finput-charset=charset in the same manual.

	The members of the source and execution character sets, except as explicitly specified in the Standard

	ARM64, X86_64

	UTF-8

	See Section “4.4 Characters” of GCC_MANUAL

	The values of the members of the execution character set

	ARM64, X86_64

	
	See Section “4.4 Characters” of GCC_MANUAL and the documentation for -fexec-charset=charset in the same manual.

	How a diagnostic is identified

	ARM64, X86_64

	
	See Section “4.1 Translation” of GCC_MANUAL.

	The places that are searched for an included < > delimited header, and how the places are specified or the header is identified

	ARM64, X86_64

	
	See Chapter “2 Header Files” of CPP_MANUAL.

	How the named source file is searched for in an included ” ” delimited header

	ARM64, X86_64

	
	See Chapter “2 Header Files” of CPP_MANUAL.

	How sequences in both forms of header names are mapped to headers or external source file names

	ARM64, X86_64

	
	See Chapter “2 Header Files” of CPP_MANUAL.

	Whether the # operator inserts a character before the character that begins a universal character name in a character constant or string literal

	ARM64, X86_64

	
	See Section “3.4 Stringizing” of CPP_MANUAL.

	The current locale used to convert a wide string literal into corresponding wide character codes

	ARM64, X86_64

	
	See Section “4.4 Characters” of GCC_MANUAL and Section “11.1 Implementation-defined behavior” of CPP_MANUAL.

	The value of a string literal containing a multibyte character or escape sequence not represented in the execution character set

	X86_64

	
	See Section “4.4 Characters” of GCC_MANUAL and Section “11.1 Implementation-defined behavior” of CPP_MANUAL.

	The behavior on each recognized #pragma directive

	ARM64, X86_64

	pack, GCC visibility

	See Section “4.13 Preprocessing Directives” of GCC_MANUAL and Section “7 Pragmas” of CPP_MANUAL.

	The method by which preprocessing tokens (possibly resulting from macro expansion) in a #include directive are combined into a header name

	X86_64

	
	See Section “4.13 Preprocessing Directives” of GCC_MANUAL and Section “11.1 Implementation-defined behavior” of CPP_MANUAL.

END OF DOCUMENT.

Documenting violations

Static analysers are used on the Xen codebase for both static analysis and MISRA
compliance.
There might be the need to suppress some findings instead of fixing them and
many tools permit the usage of in-code comments that suppress findings so that
they are not shown in the final report.

Xen includes a tool capable of translating a specific comment used in its
codebase to the right proprietary in-code comment understandable by the selected
analyser that suppress its finding.

In the Xen codebase, these tags will be used to document and suppress findings:

	SAF-X-safe: This tag means that the next line of code contains a finding, but
the non compliance to the checker is analysed and demonstrated to be safe.

	SAF-X-false-positive-<tool>: This tag means that the next line of code
contains a finding, but the finding is a bug of the tool.

SAF stands for Static Analyser Finding, the X is a placeholder for a positive
number that starts from zero, the number after SAF- shall be incremental and
unique, base ten notation and without leading zeros.

Entries in the database shall never be removed, even if they are not used
anymore in the code (if a patch is removing or modifying the faulty line).
This is to make sure that numbers are not reused which could lead to conflicts
with old branches or misleading justifications.

An entry can be reused in multiple places in the code to suppress a finding if
and only if the justification holds for the same non-compliance to the coding
standard.

An orphan entry, that is an entry who was justifying a finding in the code, but
later that code was removed and there is no other use of that entry in the code,
can be reused as long as the justification for the finding holds. This is done
to avoid the allocation of a new entry with exactly the same justification, that
would lead to waste of space and maintenance issues of the database.

The files where to store all the justifications are in xen/docs/misra/ and are
named as safe.json and false-positive-<tool>.json, they have JSON format, each
one has a different justification schema which shares some fields.

Here is an example to add a new justification in safe.json:

|{
| "version": "1.0",
| "content": [
| {
| "id": "SAF-0-safe",
| "analyser": {
| "cppcheck": "misra-c2012-20.7",
| "coverity": "misra_c_2012_rule_20_7_violation",
| "eclair": "MC3R1.R20.7"
| },
| "name": "R20.7 C macro parameters not used as expression",
| "text": "The macro parameters used in this [...]"
| },
| {
| "id": "SAF-1-safe",
| "analyser": {},
| "name": "Sentinel",
| "text": "Next ID to be used"
| }
|]
|}

To document a finding in safe.json, just add another block {[…]} before the
sentinel block, using the id contained in the sentinel block and increment by
one the number contained in the id of the sentinel block.

	Here is an explanation of the fields inside an object of the “content” array:

	
	id: it is a unique string that is used to refer to the finding, many finding
can be tagged with the same id, if the justification holds for any applied
case.
It tells the tool to substitute a Xen in-code comment having this structure:
/* SAF-0-safe […] */

	analyser: it is an object containing pair of key-value strings, the key is
the analyser, so it can be cppcheck, coverity or eclair, the value is the
proprietary id corresponding on the finding, for example when coverity is
used as analyser, the tool will translate the Xen in-code coment in this way:
/* SAF-0-safe […] */ -> /* coverity[misra_c_2012_rule_20_7_violation] */
if the object doesn’t have a key-value, then the corresponding in-code
comment won’t be translated.

	name: a simple name for the finding

	text: a proper justification to turn off the finding.

Here is an example to add a new justification in false-positive-<tool>.json:

|{
| "version": "1.0",
| "content": [
| {
| "id": "SAF-0-false-positive-<tool>",
| "violation-id": "<proprietary-id>",
| "tool-version": "<version>",
| "name": "R20.7 [...]",
| "text": "[...]"
| },
| {
| "id": "SAF-1-false-positive-<tool>",
| "violation-id": "",
| "tool-version": "",
| "name": "Sentinel",
| "text": "Next ID to be used"
| }
|]
|}

To document a finding in false-positive-<tool>.json, just add another block
{[…]} before the sentinel block, using the id contained in the sentinel block
and increment by one the number contained in the id of the sentinel block.

	Here is an explanation of the fields inside an object of the “content” array:

	
	id: it has the same meaning as in the “safe” justification schema.
It tells the tool to substitute a Xen in-code comment having this structure:
/* SAF-0-false-positive-<tool> […] */

	violation-id: its value is a string containing the proprietary id
corresponding to the finding, for example when <tool> is coverity, the Xen
tool will translate the Xen in-code coment in this way:
/* SAF-0-false-positive-coverity […] */ -> /* coverity[misra_c_2012_rule_20_7_violation] */
if the object doesn’t have a value, then the corresponding in-code comment
won’t be translated.

	tool-version: the version of the tool affected by the false positive, if it
is discovered in more than one version, this string can be a range
(eg. 2.7 - 3.0)

	name, text: they have the same meaning as in the “safe” justification schema.

Justification example

Here an example of the usage of the in-code comment tags to suppress a finding
for the Rule 8.6:

Eclair reports it in its web report, file xen/include/xen/kernel.h, line 68:

MC3R1.R8.6 for program ‘xen/xen-syms’, variable ‘_start’ has no definition

Also coverity reports it, here is an extract of the finding:

xen/include/xen/kernel.h:68:

1. misra_c_2012_rule_8_6_violation: Function “_start” is declared but never
defined.

The analysers are complaining because we have this in xen/include/xen/kernel.h
at line 68:

| extern char _start[], _end[], start[];

Those are symbols exported by the linker, hence we will need to have a proper
deviation for this finding.

We will prepare our entry in the safe.json database:

|{
| "version": "1.0",
| "content": [
| {
| [...]
| },
| {
| "id": "SAF-1-safe",
| "analyser": {
| "eclair": "MC3R1.R8.6",
| "coverity": "misra_c_2012_rule_8_6_violation"
| },
| "name": "Rule 8.6: linker script defined symbols",
| "text": "It is safe to declare this symbol because it is defined in the linker script."
| },
| {
| "id": "SAF-2-safe",
| "analyser": {},
| "name": "Sentinel",
| "text": "Next ID to be used"
| }
|]
|}

And we will use the proper tag above the violation line:

| /* SAF-1-safe R8.6 linker defined symbols */
| extern char _start[], _end[], start[];

This entry will fix also the violation on _end and start, because they are on
the same line and the same “violation ID”.

Also, the same tag can be used on other symbols from the linker that are
declared in the codebase, because the justification holds for them too.

A possible violation found by Cppcheck can be handled in the same way, from the
cppcheck text report it is possible to identify the violation id:

include/public/arch-arm.h(226,0):misra-c2012-20.7:style:Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses (Misra rule 20.7)

The violation id can be located also in the HTML report, opening index.html from
the browser, the violations can be filtered by id in the left side panel, under
the column “Defect ID”. On the right there will be a list of files with the type
of violation and the violation line number, for the same violation above, there
will be an entry like the following and the violation id will be in the column
“Id”:

include/public/arch-arm.h

[…]

226 misra-c2012-20.7 style Expressions resulting from the expansion of macro parameters shall be enclosed in parentheses (Misra rule 20.7)

[…]

Given the violation id “misra-c2012-20.7”, the procedure above can be followed
to justify this finding.

Exclude file list for xen-analysis script

The code analysis is performed on the Xen codebase for both MISRA
checkers and static analysis checkers, there are some files however that
needs to be removed from the findings report for various reasons (e.g.
they are imported from external sources, they generate too many false
positive results, etc.).

For this reason the file docs/misra/exclude-list.json is used to exclude every
entry listed in that file from the final report.
Currently only the cppcheck analysis will use this file.

Here is an example of the exclude-list.json file:

|{
| "version": "1.0",
| "content": [
| {
| "rel_path": "relative/path/from/xen/file",
| "comment": "This file is originated from ..."
| },
| {
| "rel_path": "relative/path/from/xen/folder/*",
| "comment": "This folder is a library"
| },
| {
| "rel_path": "relative/path/from/xen/mem*.c",
| "comment": "memcpy.c, memory.c and memcmp.c are from the outside"
| }
|]
|}

	Here is an explanation of the fields inside an object of the “content” array:

	
	rel_path: it is the relative path from the Xen folder to the file/folder that
needs to be excluded from the analysis report, it can contain a wildcard to
match more than one file/folder at the time. This field is mandatory.

	comment: an optional comment to explain why the file is removed from the
analysis.

To ease the review and the modifications of the entries, they shall be listed in
alphabetical order referring to the rel_path field.
Excluded folder paths shall end with ‘/*’ in order to match everything on that
folder.

Xen static analysis

The Xen codebase integrates some scripts and tools that helps the developer to
perform static analysis of the code, currently Xen supports three analysis tool
that are eclair, coverity and cppcheck.
The Xen tree has a script (xen-analysis.py) available to ease the analysis
process and it integrates a way to suppress findings on these tools, please
check the documenting-violation.rst document to know more about it.

Analyse Xen with Coverity or Eclair

The xen-analysis.py script has two arguments to select which tool is used for
the analysis:

	xen-analysis.py –run-coverity – [optional make arguments]

	xen-analysis.py –run-eclair – [optional make arguments]

For example when using Coverity to analyse a Xen build obtained by passing these
arguments to the make system: XEN_TARGET_ARCH=arm64
CROSS_COMPILE=aarch64-linux-gnu-, the optional make arguments passed to
xen-analysis.py must be the same and the command below should be passed to
Coverity in its build phase:

	xen-analysis.py –run-coverity – XEN_TARGET_ARCH=arm64
CROSS_COMPILE=aarch64-linux-gnu-

Which tells to the script to prepare the codebase for an analysis by Coverity
and forwards the make arguments to the make build invocation.

When invoking the script, the procedure below will be followed:

	Find which files among *.c and *.h has any in-code comment as
/* SAF-X-[…] */, the meaning of these comments is explained in
documenting-violation.rst.
Save the files obtained as <file>.safparse and generate <file> files where
the special in-code comments above are substituted with the proprietary
in-code comment used by the selected analysis tool. The safe.json and
false-positive-<tool>.json text file database are used to link each Xen tag
to the right proprietary in-code comment.

	Now Xen compilation starts using every <additional make parameters> supplied
at the script invocation. Coverity and Eclair are capable of intercepting
the compiler running from make to perform their analysis without
instrumenting the makefile.

	As final step every <file>.safparse file are reverted back as <file> and
every artifact related to the analysis will be cleaned.
This step is performed even in case any of the previous step fail, to skip
this step, call the script adding the –no-clean argument, but before
running again the script, call it with the –clean-only argument, that will
execute only this cleaning step.

Analyse Xen with Cppcheck

Cppcheck tool is integrated in xen-analysis.py script, when using the script,
the tool will be called on every source file compiled by the make build system.
Here how to start the analysis with Cppcheck:

	xen-analysis.py –run-cppcheck [–cppcheck-misra] [–cppcheck-html] –
[optional make arguments]

The command above tells the script to prepare the codebase and use Cppcheck tool
for the analysis.
The optional argument –cppcheck-misra activates the analysis also for MISRA
compliance.
The optional argument –cppcheck-html instruct cppcheck to produce an additional
HTML report.

When invoking the script for Cppcheck analysis, the followed procedure is
similar to the one above for Coverity or Eclair, but it has some additional
steps:

	This step is the same as step 1 for Coverity/Eclair.

	The cppcheck dependency are created, build directory for cppcheck analysis
and an header file containing internal compiler macro
(include/generated/compiler-def.h) are generated

	Xen compilation starts using every <additional make parameters> supplied
at the script invocation, but because cppcheck is not able to intercept the
compiled files and flags on compiler invocation, a script (cppcheck-cc.sh)
is passed as CC to the make system, it is a wrapper for the compiler that
will also execute cppcheck on every compiled file.

	After the compilation and analysis, the cppcheck report will be created
putting together all the cppcheck report fragments for every analysed file.
Cppcheck will produce a text fragment and an additional XML report fragment
if the script is configured to produce the HTML output.

	This step is the same as step 3 for Coverity/Eclair.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 The Xen Hypervisor documentation

 		
 Admin Guide

 		
 Introduction

 		
 Microcode Loading

 		
 Boot time microcode loading

 		
 Runtime microcode loading

 		
 Guest documentation

 		
 x86

 		
 Hypercall ABI

 		
 Hypercall Page

 		
 Hypervisor documentation

 		
 Code Coverage

 		
 Compiling Xen

 		
 Accessing the raw coverage data

 		
 GCC coverage

 		
 Clang coverage

 		
 x86

 		
 How Xen Boots

 		
 MISRA C rules for Xen

 		
 Glossary

_static/ajax-loader.gif

