
Xen Documentation
Release 4.18-unstable

The Xen development community

Aug 09, 2023

Contents

1 User documentation 3
1.1 Admin Guide . 3

2 Guest documentation 7
2.1 Guest documentation . 7

3 Hypervisor developer documentation 9
3.1 Hypervisor documentation . 9

4 MISRA C coding guidelines 13
4.1 MISRA C rules for Xen . 13

5 Miscellanea 21
5.1 Glossary . 21

Index 23

i

ii

Xen Documentation, Release 4.18-unstable

Note: Xen’s Sphinx/RST documentation is a work in progress. The existing documentation can be found at https:
//xenbits.xen.org/docs/

Xen is an open source, bare metal hypervisor. It runs as the most privileged piece of software on the system, and
shares the resources of the hardware between virtual machines. See Introduction for an introduction to a Xen system.

Contents 1

https://xenbits.xen.org/docs/
https://xenbits.xen.org/docs/

Xen Documentation, Release 4.18-unstable

2 Contents

CHAPTER 1

User documentation

This is documentation for an administrator of a Xen system. It is intended for someone who is not necesserily a
developer, has installed Xen from their preferred distribution, and is attempting to run virtual machines and configure
the system.

1.1 Admin Guide

1.1.1 Introduction

Xen is an open source, bare metal hypervisor. It runs as the most privileged piece of software, and shares the resources
of the hardware between virtual machines.

In Xen terminology, there are domains, commonly abbreviated to dom, which are identified by their numeric domid.

When Xen boots, dom0 is automatically started as well. Dom0 is a virtual machine which, by default, is granted full
permissions1. A typical setup might be:

Dom0 takes the role of control domain, responsible for creating and managing other virtual machines, and the role of
hardware domain, responsible for hardware and marshalling guest I/O.

Xen is deliberately minimal, and has no device drivers2. Xen manages RAM, schedules virtual CPUs on the available
physical CPUs, and marshals interrupts.

Xen also provides a hypercall interface to guests, including event channels (virtual interrupts), grant tables (shared
memory), on which a lot of higher level functionality is built.

1 A common misconception with Xen’s architecture is that dom0 is somehow different to other guests. The choice of id 0 is not an accident, and
follows in UNIX heritage.

2 This definition might be fuzzy. Xen can talk to common serial UARTs, and knows how to drive various CPU internal devices such as IOMMUs,
but has no knowledge of network cards, disks, etc. All of that is the hardware domains responsibility.

3

Xen Documentation, Release 4.18-unstable

1.1.2 Microcode Loading

Like many other pieces of hardware, CPUs themselves have errata which are discovered after shipping, and need to
be addressed in the field. Microcode can be considered as firmware for the processor, and updates are published as
needed by the CPU vendors.

Microcode is included as part of the system firmware by an OEM, and a system firmware update is the preferred way
of obtaining updated microcode. However, this is often not the most expedient way to get updates, so Xen supports
loading microcode itself.

Distros typically package microcode updates for users, and may provide hooks to cause microcode to be automatically
loaded at boot time. Consult your dom0 distro guidance for microcode loading.

Microcode can make almost arbitrary changes to the processor, including to software visible features. This includes
removing features (e.g. the Haswell TSX errata which necessitated disabling the feature entirely), or the addition of
brand new features (e.g. the Spectre v2 controls to work around speculative execution vulnerabilities).

Boot time microcode loading

Where possible, microcode should be loaded at boot time. This allows the CPU to be updated to its eventual configu-
ration before Xen starts making setup decisions based on the visible features.

Xen will report during boot if it performed a microcode update:

[root@host ~]# xl dmesg | grep microcode
(XEN) microcode: CPU0 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU2 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU4 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU6 updated from revision 0x1a to 0x25, date = 2018-04-02

The exact details printed are system and microcode specific. After boot, the current microcode version can obtained
from with dom0:

[root@host ~]# head /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 60
model name : Intel(R) Xeon(R) CPU E3-1240 v3 @ 3.40GHz
stepping : 3
microcode : 0x25
cpu MHz : 3392.148
cache size : 8192 KB
physical id : 0

Loading microcode from a single file

Xen handles microcode blobs in the binary form shipped by vendors, which is also the format which the processor
accepts. This format contains header information which Xen and various userspace tools can use to identify the correct
blob for a specific CPU.

Tools such as Dracut will identify the correct blob for the current CPU, which will be a few kilobytes, for minimal
overhead during boot.

Additionally, Xen is capable of handling a number of blobs concatenated together, and will locate the appropriate blob
based on the header information.

4 Chapter 1. User documentation

Xen Documentation, Release 4.18-unstable

This option is less efficient during boot, but may be preferred in situations where the exact CPU details aren’t known
ahead of booting (e.g. install media).

The file containing the blob(s) needs to be accessible to Xen as early as possible.

• For multiboot/multiboot2 boots, this is achieved by loading the file as a multiboot module. The ucode=$num
command line option can be used to identify which multiboot module contains the microcode, including negative
indexing to count from the end.

• For EFI boots, there isn’t really a concept of modules. A microcode file can be specified in the EFI configuration
file with ucode=$file. Use of this mechanism will override any ucode= settings on the command line.

Loading microcode from a Linux initrd

For systems using a Linux based dom0, it usually suffices to install the appropriate distro package, and add
ucode=scan to Xen’s command line.

Xen is compatible with the Linux initrd microcode protocol. The initrd is expected to be generated with an uncom-
pressed CPIO archive at the beginning which contains contains one of these two files:

kernel/x86/microcode/GenuineIntel.bin
kernel/x86/microcode/AuthenticAMD.bin

The ucode=scan command line option will cause Xen to search through all modules to find any CPIO archives, and
search the archive for the applicable file. Xen will stop searching at the first match.

Runtime microcode loading

Warning: If at all possible, microcode updates should be done by firmware updates, or at boot time. Not all
microcode updates (or parts thereof) can be applied at runtime.

Given the proprietary nature of microcode, we are unable to make any claim that runtime microcode loading is
risk-free. Any runtime microcode loading needs adequate testing on a development instance before being rolled
out to production systems.

The xen-ucode utility can be used to initiate a runtime microcode load:

[root@host ~]# xen-ucode
xen-ucode: Xen microcode updating tool
Usage: xen-ucode <microcode blob>
[root@host ~]#

The details of microcode blobs (if even packaged to begin with) are specific to the dom0 distribution. Consult your
dom0 OS documentation for details. One example with a Linux dom0 on a Haswell system might look like:

[root@host ~]# xen-ucode /lib/firmware/intel-ucode/06-3c-03
[root@host ~]#

It will pass the blob to Xen, which will check to see whether the blob is correct for the processor, and newer than the
running microcode.

If these checks pass, the entire system will be rendezvoused and an update will be initiated on all CPUs in parallel. As
with boot time loading, diagnostics will be put out onto the console:

1.1. Admin Guide 5

Xen Documentation, Release 4.18-unstable

[root@host ~]# xl dmesg | grep microcode
(XEN) microcode: CPU0 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU2 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU4 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) microcode: CPU6 updated from revision 0x1a to 0x25, date = 2018-04-02
(XEN) 4 cores are to update their microcode
(XEN) microcode: CPU0 updated from revision 0x25 to 0x27, date = 2019-02-26
(XEN) microcode: CPU4 updated from revision 0x25 to 0x27, date = 2019-02-26
(XEN) microcode: CPU2 updated from revision 0x25 to 0x27, date = 2019-02-26
(XEN) microcode: CPU6 updated from revision 0x25 to 0x27, date = 2019-02-26

6 Chapter 1. User documentation

CHAPTER 2

Guest documentation

This documentation concerns the APIs and ABIs available to guests. It is intended for OS developers trying to use a
Xen feature, and for Xen developers to avoid breaking things.

2.1 Guest documentation

2.1.1 x86

Hypercall ABI

Hypercalls are system calls to Xen. Two modes of guest operation are supported, and up to 6 individual parameters
are supported.

Hypercalls may only be issued by kernel-level software1.

Registers

The registers used for hypercalls depends on the operating mode of the guest.

ABI Hypercall Index Parameters (1 - 6) Result
64bit RAX RDI RSI RDX R10 R8 R9 RAX
32bit EAX EBX ECX EDX ESI EDI EBP EAX

32 and 64bit PV guests have an ABI fixed by their guest type. The ABI for an HVM guest depends on whether the
vCPU is operating in a 64bit segment or not2.

1 For HVM guests, HVMOP_guest_request_vm_event may be configured to be usable from userspace, but this behaviour is not default.
2 While it is possible to use compatibility mode segments in a 64bit kernel, hypercalls issues from such a mode will be interpreted with the 32bit

ABI. Such a setup is not expected in production scenarios.

7

Xen Documentation, Release 4.18-unstable

Parameters

Different hypercalls take a different number of parameters. Each hypercall potentially clobbers each of its parameter
registers; a guest may not rely on the parameter registers staying the same. A debug build of Xen checks this by
deliberately poisoning the parameter registers before returning back to the guest.

Mode transfer

The exact sequence of instructions required to issue a hypercall differs between virtualisation mode and hardware
vendor.

Guest Transfer instruction
32bit PV INT 0x82
64bit PV SYSCALL
Intel HVM VMCALL
AMD HVM VMMCALL

To abstract away the details, Xen implements an interface known as the Hypercall Page. This allows a guest to make
a hypercall without needing to perform mode-specific or vendor-specific setup.

Hypercall Page

The hypercall page is a page of guest RAM into which Xen will write suitable transfer stubs.

Creating a hypercall page is an isolated operation from Xen’s point of view. It is the guests responsibility to ensure that
the hypercall page, once written by Xen, is mapped with executable permissions so it may be used. Multiple hypercall
pages may be created by the guest, if it wishes.

The stubs are arranged by hypercall index, and start on 32-byte boundaries. To invoke a specific hypercall, call the
relevant stub3:

call hypercall_page + index * 32

There result is an ABI which is invariant of the exact operating mode or hardware vendor. This is intended to simplify
guest kernel interfaces by abstracting away the details of how it is currently running.

Creating Hypercall Pages

Guests which are started using the PV boot protocol may set set XEN_ELFNOTE_HYPERCALL_PAGE to have the
nominated page written as a hypercall page during construction. This mechanism is common for PV guests, and allows
hypercalls to be issued with no additional setup.

Any guest can locate the Xen CPUID leaves and read the hypercall transfer page information, which specifies an MSR
that can be used to create additional hypercall pages. When a guest physical address is written to the MSR, Xen writes
a hypercall page into the nominated guest page. This mechanism is common for HVM guests which are typically
started via legacy means.

3 HYPERCALL_iret is special. It is only implemented for PV guests and takes all its parameters on the stack. This stub should be jmp’d to,
rather than call’d. HVM guests have this stub implemented as ud2a to prevent accidental use.

8 Chapter 2. Guest documentation

CHAPTER 3

Hypervisor developer documentation

This is documentation for a hypervisor developer. It is intended for someone who is building Xen from source, and is
running the new hypervisor in some kind of development environment.

3.1 Hypervisor documentation

3.1.1 Code Coverage

Xen can be compiled with coverage support. When configured, Xen will record the coverage of its own basic blocks.
Being a piece of system software rather than a userspace, it can’t automatically write coverage out to the filesystem,
so some extra steps are required to collect and process the data.

Warning: ARM doesn’t currently boot when the final binary exceeds 2MB in size, and the coverage build tends
to exceed this limit.

Compiling Xen

Coverage support is dependent on the compiler and toolchain used. As Xen isn’t a userspace application, it can’t use
the compiler supplied library, and instead has to provide some parts of the implementation itself.

For x86, coverage support was introduced with GCC 3.4 or later, and Clang 3.9 or later, and Xen is compatible with
these. However, the compiler internal formats do change occasionally, and this may involve adjustments to Xen. While
we do our best to keep up with these changes, Xen may not be compatible with bleeding edge compilers.

To build with coverage support, enable CONFIG_COVERAGE in Kconfig. The build system will automatically select
the appropriate format based on the compiler in use.

The resulting binary will record its own coverage while running.

9

Xen Documentation, Release 4.18-unstable

Accessing the raw coverage data

The SYSCTL_coverage_op hypercall is used to interact with the coverage data. A dom0 userspace helper,
xenconv is provided as well, which thinly wraps this hypercall.

The read subcommand can be used to obtain the raw coverage data:

[root@host ~]# xencov read > coverage.dat

This is toolchain-specific data and needs to be fed back to the appropriate programs to post-process.

Alternatively, the reset subcommand can be used reset all counters back to 0:

[root@host ~]# xencov reset

GCC coverage

A build using GCC’s coverage will result in *.gcno artefact for every object file. The raw coverage data needs
splitting to form the matching *.gcda files.

An example of how to view the data is as follows. It uses lcov which is a graphical frontend to gcov.

• Obtain the raw coverage data from the test host, and pull it back to the build working tree.

• Use xencov_split to extract the *.gcda files. Note that full build paths are used by the tools, so splitting
needs to output relative to /.

• Use geninfo to post-process the raw data.

• Use genhtml to render the results as HTML.

• View the results in a browser.

xen.git/xen$ ssh root@host xencov read > coverage.dat
xen.git/xen$../tools/xencov_split coverage.dat --output-dir=/
xen.git/xen$ geninfo . -o cov.info
xen.git/xen$ genhtml cov.info -o cov/
xen.git/xen$ $BROWSER cov/index.html

Clang coverage

An example of how to view the data is as follows.

• Obtain the raw coverage data from the test host, and pull it back to the build working tree.

• Use llvm-profdata to post-process the raw data.

• Use llvm-cov show in combination with xen-syms from the build to render the results as HTML.

• View the results in a browser.

xen.git/xen$ ssh root@host xencov read > xen.profraw
xen.git/xen$ llvm-profdata merge xen.profraw -o xen.profdata
xen.git/xen$ llvm-cov show -format=html -output-dir=cov/ xen-syms -instr-profile=xen.
→˓profdata
xen.git/xen$ $BROWSER cov/index.html

Full documentation on Clang’s coverage capabilities can be found at: https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html

10 Chapter 3. Hypervisor developer documentation

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Xen Documentation, Release 4.18-unstable

3.1.2 x86

How Xen Boots

This is an at-a-glance reference of Xen’s booting capabilities and expectations.

Build

A build of xen produces xen.gz and optionally xen.efi as final artefacts.

• For BIOS, Xen supports the Multiboot 1 and 2 protocols.

• For EFI, Xen supports Multiboot 2 with EFI extensions, and native EFI64.

• For virtualisation, Xen supports starting directly with the PVH boot protocol.

Objects

To begin with, most object files are compiled and linked. This includes the Multiboot 1 and 2 headers and entrypoints,
including the Multiboot 2 tags for EFI extensions. When CONFIG_PVH_GUEST is selected at build time, this includes
the PVH entrypoint and associated ELF notes.

Depending on whether the compiler supports __attribute__((__ms_abi__)) or not, either an EFI stub is
included which nops/fails applicable setup and runtime calls, or full EFI support is included.

Protocols and entrypoints

All headers and tags are built in xen/arch/x86/boot/head.S

The Multiboot 1 headers request aligned modules and memory information. Entry is via the start of the binary image,
which is the start symbol. This entrypoint must be started in 32bit mode.

The Multiboot 2 headers are more flexible, and in addition request that the image be loaded as high as possible below
the 4G boundary, with 2M alignment. Entry is still via the start symbol as with MB1, and still in 32bit mode.

Headers for the EFI MB2 extensions are also present. These request that ExitBootServices() not be called, and
register __efi_mb2_start as an alternative entrypoint, entered in 64bit mode.

If CONFIG_PVH_GUEST was selected at build time, an Elf note is included which indicates the ability to use the
PVH boot protocol, and registers __pvh_start as the entrypoint, entered in 32bit mode.

xen.gz

The objects are linked together to form xen-symswhich is an ELF64 executable with full debugging symbols. xen.
gz is formed by stripping xen-syms, then repackaging the result as an ELF32 object with a single load section at
2MB, and gzip-ing the result. Despite the ELF32 having a fixed load address, its contents are relocatable.

Any bootloader which unzips the binary and follows the ELF headers will place it at the 2M boundary and jump to
start which is the identified entry point. However, Xen depends on being entered with the MB1 or MB2 protocols,
and will terminate otherwise.

The MB2+EFI entrypoint depends on being entered with the MB2 protocol, and will terminate if the entry protocol is
wrong, or if EFI details aren’t provided, or if EFI Boot Services are not available.

3.1. Hypervisor documentation 11

Xen Documentation, Release 4.18-unstable

xen.efi

When a PEI-capable toolchain is found, the objects are linked together and a PE32+ binary is created. It can be run
directly from the EFI shell, and has efi_start as its entry symbol.

Note: xen.efi does contain all MB1/MB2/PVH tags included in the rest of the build. However, entry via anything
other than the EFI64 protocol is unsupported, and won’t work.

Boot

Xen, once loaded into memory, identifies its position in order to relocate system structures. For 32bit entrypoints, this
necessarily requires a call instruction, and therefore a stack, but none of the ABIs provide one.

Overall, given that on a BIOS-based system, the IVT and BDA occupy the first 5/16ths of the first page of RAM, with
the rest free to use, Xen assumes the top of the page is safe to use.

12 Chapter 3. Hypervisor developer documentation

CHAPTER 4

MISRA C coding guidelines

MISRA C rules and directive to be used as coding guidelines when writing Xen hypervisor code.

4.1 MISRA C rules for Xen

Note: IMPORTANT All MISRA C rules, text, and examples are copyrighted by the MISRA Consortium Limited
and used with permission.

Please refer to https://www.misra.org.uk/ to obtain a copy of MISRA C, or for licensing options for other use of the
rules.

The following is the list of MISRA C rules that apply to the Xen hypervisor.

It is possible that in specific circumstances it is best not to follow a rule because it is not possible or because the
alternative leads to better code quality. Those cases are called “deviations”. They are permissible as long as they are
documented. For details, please refer to docs/misra/documenting-violations.rst

Other documentation mechanisms are work-in-progress.

The existing codebase is not 100% compliant with the rules. Some of the violations are meant to be documented as
deviations, while some others should be fixed. Both compliance and documenting deviations on the existing codebase
are work-in-progress.

The list below might need to be updated over time. Reach out to THE REST maintainers if you want to suggest a
change.

13

https://www.misra.org.uk/

Xen Documentation, Release 4.18-unstable

Dir
num-
ber

Sever-
ity

Summary Notes

Dir
1.1

Re-
quired

Any implementation-defined behaviour on
which the output of the program depends
shall be documented and understood

Dir
2.1

Re-
quired

All source files shall compile without any
compilation errors

Dir
4.7

Re-
quired

If a function returns error information then
that error information shall be tested

Dir
4.10

Re-
quired

Precautions shall be taken in order to prevent
the contents of a header file being included
more than once

Dir
4.11

Re-
quired

The validity of values passed to library func-
tions shall be checked

We do not have libraries in Xen (libfdt and others
are not considered libraries from MISRA C point of
view as they are imported in source form)

Dir
4.14

Re-
quired

The validity of values received from external
sources shall be checked

Rule number Severity Summary Notes
Rule 1.1 Required The program shall contain

no violations of the stan-
dard C syntax and con-
straints, and shall not ex-
ceed the implementation’s
translation limits

We make use of several
compiler extensions
as documented by C-
language-toolchain.rst

Rule 1.3 Required There shall be no occur-
rence of undefined or crit-
ical unspecified behaviour

Rule 1.4 Required Emergent language fea-
tures shall not be used

Emergent language fea-
tures, such as C11 fea-
tures, should not be con-
fused with similar com-
piler extensions, which we
use. When the time comes
to adopt C11, this rule will
be revisited.

Rule 2.1 Required A project shall not contain
unreachable code

Rule 2.6 Advisory A function should not
contain unused label dec-
larations

Rule 3.1 Required The character sequences
/* and // shall not be used
within a comment

Rule 3.2 Required Line-splicing shall not be
used in // comments

Rule 4.1 Required Octal and hexadecimal es-
cape sequences shall be
terminated

Continued on next page

14 Chapter 4. MISRA C coding guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_01_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_01_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_02_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_02_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_10.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_10.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_01.c
docs/misra/C-language-toolchain.rst
docs/misra/C-language-toolchain.rst
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_01.c

Xen Documentation, Release 4.18-unstable

Table 1 – continued from previous page
Rule number Severity Summary Notes
Rule 4.2 Advisory Trigraphs should not be

used
Rule 5.1 Required External identifiers shall

be distinct
The Xen characters
limit for identifiers is
40. Public headers
(xen/include/public/) are
allowed to retain longer
identifiers for backward
compatibility.

Rule 5.2 Required Identifiers declared in the
same scope and name
space shall be distinct

The Xen characters
limit for identifiers is
40. Public headers
(xen/include/public/) are
allowed to retain longer
identifiers for backward
compatibility.

Rule 5.3 Required An identifier declared in
an inner scope shall not
hide an identifier declared
in an outer scope

Using macros as macro
parameters at invocation
time is allowed even if
both macros use identi-
cally named local vari-
ables, e.g. max(var0,
min(var1, var2))

Rule 5.4 Required Macro identifiers shall be
distinct

The Xen characters limit
for macro identifiers
is 40. Public headers
(xen/include/public/) are
allowed to retain longer
identifiers for backward
compatibility.

Rule 5.6 Required A typedef name shall be a
unique identifier

Rule 6.1 Required Bit-fields shall only be de-
clared with an appropriate
type

In addition to the C99
types, we also consider
appropriate types enum
and all explicitly signed /
unsigned integer types.

Rule 6.2 Required Single-bit named bit fields
shall not be of a signed
type

Rule 7.1 Required Octal constants shall not
be used

Continued on next page

4.1. MISRA C rules for Xen 15

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_01.c

Xen Documentation, Release 4.18-unstable

Table 1 – continued from previous page
Rule number Severity Summary Notes
Rule 7.2 Required A “u” or “U” suffix shall

be applied to all integer
constants that are repre-
sented in an unsigned type

The rule asks that any
integer literal that is im-
plicitly unsigned is made
explicitly unsigned by
using one of the indicated
suffixes. As an example,
on a machine where the
int type is 32-bit wide,
0x77777777 is signed
whereas 0x80000000 is
(implicitly) unsigned.
In order to comply
with the rule, the latter
should be rewritten as
either 0x80000000u or
0x80000000U. Consis-
tency considerations may
suggest using the same
suffix even when not
required by the rule. For
instance, if one has:
Original: f(0x77777777);
f(0x80000000);
one should do
Solution 1:
f(0x77777777U);
f(0x80000000U);
over
Solution 2:
f(0x77777777);
f(0x80000000U);
after having ascertained
that “Solution 1” is com-
patible with the intended
semantics.

Rule 7.3 Required The lowercase character l
shall not be used in a lit-
eral suffix

Rule 7.4 Required A string literal shall not
be assigned to an object
unless the object type is
pointer to const-qualified
char

All “character types”
are permitted, as long as
the string element type
and the character type
match. (There should be
no casts.) Assigning a
string literal to any object
with type “pointer to
const-qualified void” is
allowed.

Rule 8.1 Required Types shall be explicitly
specified

Continued on next page

16 Chapter 4. MISRA C coding guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_01.c

Xen Documentation, Release 4.18-unstable

Table 1 – continued from previous page
Rule number Severity Summary Notes
Rule 8.2 Required Function types shall be

in prototype form with
named parameters

Rule 8.3 Required All declarations of an ob-
ject or function shall use
the same names and type
qualifiers

Rule 8.4 Required A compatible declaration
shall be visible when an
object or function with ex-
ternal linkage is defined

Rule 8.5 Required An external object or
function shall be declared
once in one and only one
file

Rule 8.6 Required An identifier with external
linkage shall have exactly
one external definition

Declarations without
definitions are allowed
(specifically when the
definition is compiled-out
or optimized-out by the
compiler)

Rule 8.8 Required The static storage class
specifier shall be used in
all declarations of objects
and functions that have in-
ternal linkage

Rule 8.10 Required An inline function shall
be declared with the static
storage class

gnu_inline (without static)
is allowed.

Rule 8.12 Required Within an enumerator list
the value of an implicitly-
specified enumeration
constant shall be unique

Rule 8.14 Required The restrict type qualifier
shall not be used

Rule 9.1 Mandatory The value of an object
with automatic storage
duration shall not be read
before it has been set

Rule clarification: do not
use variables before they
are initialized. An explicit
initializer is not necessar-
ily required. Try reduc-
ing the scope of the vari-
able. If an explicit initial-
izer is added, consider ini-
tializing the variable to a
poison value.

Rule 9.2 Required The initializer for an ag-
gregate or union shall be
enclosed in braces

Rule 9.3 Required Arrays shall not be par-
tially initialized

{} is also allowed to
specify explicit zero-
initialization
Continued on next page

4.1. MISRA C rules for Xen 17

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_10.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_03.c

Xen Documentation, Release 4.18-unstable

Table 1 – continued from previous page
Rule number Severity Summary Notes
Rule 9.4 Required An element of an ob-

ject shall not be initialized
more than once

Rule 12.5 Mandatory The sizeof operator shall
not have an operand
which is a function pa-
rameter declared as “array
of type”

Rule 13.6 Mandatory The operand of the sizeof
operator shall not contain
any expression which has
potential side effects

Rule 13.1 Required Initializer lists shall not
contain persistent side ef-
fects

Rule 14.1 Required A loop counter shall not
have essentially floating
type

Rule 16.7 Required A switch-expression
shall not have essentially
Boolean type

Rule 17.3 Mandatory A function shall not be de-
clared implicitly

Rule 17.4 Mandatory All exit paths from a func-
tion with non-void return
type shall have an explicit
return statement with an
expression

Rule 17.6 Mandatory The declaration of an ar-
ray parameter shall not
contain the static keyword
between the []

Rule 18.3 Required The relational operators >
>= < and <= shall not
be applied to objects of
pointer type except where
they point into the same
object

Rule 19.1 Mandatory An object shall not be as-
signed or copied to an
overlapping object

Be aware that the static
analysis tool Eclair might
report several findings for
Rule 19.1 of type “cau-
tion”. These are instances
where Eclair is unable to
verify that the code is
valid in regard to Rule
19.1. Caution reports are
not violations.
Continued on next page

18 Chapter 4. MISRA C coding guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_19_01.c

Xen Documentation, Release 4.18-unstable

Table 1 – continued from previous page
Rule number Severity Summary Notes
Rule 20.7 Required Expressions resulting

from the expansion of
macro parameters shall be
enclosed in parentheses

Rule 20.13 Required A line whose first token is
shall be a valid prepro-
cessing directive

Rule 20.14 Required All #else #elif and #en-
dif preprocessor directives
shall reside in the same
file as the #if #ifdef or
#ifndef directive to which
they are related

Rule 21.13 Mandatory Any value passed to a
function in <ctype.h>
shall be representable as
an unsigned char or be the
value EOF

Rule 21.17 Mandatory Use of the string handling
functions from <string.h>
shall not result in accesses
beyond the bounds of the
objects referenced by their
pointer parameters

Rule 21.18 Mandatory The size_t argument
passed to any function in
<string.h> shall have an
appropriate value

Rule 21.19 Mandatory The pointers returned by
the Standard Library func-
tions localeconv, getenv,
setlocale or, strerror shall
only be used as if they
have pointer to const-
qualified type

Rule 21.20 Mandatory The pointer returned by
the Standard Library func-
tions asctime ctime gm-
time localtime localeconv
getenv setlocale or strerror
shall not be used follow-
ing a subsequent call to
the same function

Rule 21.21 Required The Standard Library
function system of
<stdlib.h> shall not be
used

Rule 22.2 Mandatory A block of memory shall
only be freed if it was allo-
cated by means of a Stan-
dard Library function

Continued on next page

4.1. MISRA C rules for Xen 19

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_17.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_18.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_19.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_20.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_02.c

Xen Documentation, Release 4.18-unstable

Table 1 – continued from previous page
Rule number Severity Summary Notes
Rule 22.4 Mandatory There shall be no attempt

to write to a stream which
has been opened as read-
only

Rule 22.5 Mandatory A pointer to a FILE object
shall not be dereferenced

Rule 22.6 Mandatory The value of a pointer to
a FILE shall not be used
after the associated stream
has been closed

20 Chapter 4. MISRA C coding guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_06.c

CHAPTER 5

Miscellanea

5.1 Glossary

control domain A domain, commonly dom0, with the permission and responsibility to create and manage other
domains on the system.

domain A domain is Xen’s unit of resource ownership, and generally has at the minimum some RAM and virtual
CPUs.

The terms domain and guest are commonly used interchangeably, but they mean subtly different things.

A guest is a single, end user, virtual machine.

In some cases, e.g. during live migration, one guest will be comprised of two domains for a period of time,
while it is in transit.

domid The numeric identifier of a running domain. It is unique to a single instance of Xen, used as the identifier in
various APIs, and is typically allocated sequentially from 0.

guest The term ‘guest’ has two different meanings, depending on context, and should not be confused with domain.

When discussing a Xen system as a whole, a ‘guest’ refer to a virtual machine which is the “useful output” of
running the system in the first place (e.g. an end-user VM). Virtual machines providing system services, (e.g.
the control and/or hardware domains), are not considered guests in this context.

In the code, “guest context” and “guest state” is considered in terms of the CPU architecture, and contrasted
against hypervisor context/state. In this case, it refers to all code running lower privilege privilege level the
hypervisor. As such, it covers all domains, including ones providing system services.

hardware domain A domain, commonly dom0, which shares responsibility with Xen about the system as a whole.

By default it gets all devices, including all disks and network cards, so is responsible for multiplexing guest I/O.

21

Xen Documentation, Release 4.18-unstable

22 Chapter 5. Miscellanea

Index

C
control domain, 21

D
domain, 21
domid, 21

G
guest, 21

H
hardware domain, 21

23

	User documentation
	Admin Guide

	Guest documentation
	Guest documentation

	Hypervisor developer documentation
	Hypervisor documentation

	MISRA C coding guidelines
	MISRA C rules for Xen

	Miscellanea
	Glossary

	Index

